|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Математико-статистические методы изучения связей
Математико-статистические методы изучения связей, называемые иначе стохастическим моделированием, являются в определенной степени дополнением и углублением детерминированного анализа. В анализе финансово-хозяйственной деятельности стохастические модели используются, когда необходимо: оценить влияние факторов, по которым нельзя построить жестко детерминированную модель; изучить и сравнить влияние факторов, которые невозможно включить в одну и ту же детерминированную модель; выделить и оценить влияние сложных факторов, которые не могут быть выражены одним определенным количественным показателем. В отличие от детерминистского, стохастический подход для своей реализации требует выполнения ряда предпосылок. В первую очередь речь идет о наличии достаточно большой совокупности объектов (жестко детерминированную модель можно анализировать и строить по одному объекту, для стохастической же модели необходима совокупность). Кроме того, необходим достаточный объем наблюдений: по одному-двум наблюдениям судить о характере стохастической связи нельзя. Использование стохастических моделей в экономике, в отличие от использования их в технике, имеет определенные трудности, связанные с получением совокупности достаточного объема. В технике эксперимент можно повторить, в экономике этого сделать нельзя. Это приводит к дискуссии о правомерности использования статистических методов при построении факторных моделей в анализе деятельности предприятий, поскольку при этом нередко приходится работать в условиях малых выборок (менее 20 наблюдений), а кроме того, в теории статистики считается, что при построении регрессии количество наблюдений должно в 6-8 раз превышать количество факторов, что крайне редко встречается в анализе финансово-хозяйственной деятельности предприятий. Поскольку стохастическая модель - это, как правило, уравнение регрессии, при ее построении должны выполняться следующие условия: случайность наблюдений; наличие однородности совокупности, как качественной, так и количественной (показателем количественной однородности совокупности данных является показатель вариации, который мы рассмотрели в разделе 2.7.3); наличие специального математического аппарата (например, инструменты анализа автокорреляций для анализа рядов динамики). Основная сфера приложения стохастических моделей — это проблемно-ориентированный и тематический анализ. Стохастическое моделирование предназначено для решения трех основных задач: установление самого факта наличия (или отсутствия) статистически значимой связи между изучаемыми признаками; прогнозирование неизвестных значений результативных показателей по заданным значениям факторных признаков (задачи экстраполяции и интерполяции); выявление причинных связей между изучаемыми показателями, измерение их тесноты и сравнительный анализ степени влияния. Проведение стохастического моделирования - сложный процесс, состоящий из нескольких этапов, на каждом из которых выполняются определенные процедуры. Этап 1 - качественный анализ. Он включает: · постановку цели анализа; · определение совокупности включаемых в анализ данных; · определение результативных признаков; · определение факторных признаков; · выбор периода анализа; · выбор метода анализа. Этап 2 - предварительный анализ моделируемой совокупности, что подразумевает: · проверку однородности совокупности; · исключение аномальных наблюдений; · уточнение необходимого объема выборки; · установление законов распределения изучаемых переменных. Этап 3 - построение регрессионной модели экономического объекта, которое включает: · перебор конкурирующих вариантов моделей; · уточнение перечня факторов, включаемых в модель; · расчет оценок параметров уравнений регрессии. Этап 4 - оценка адекватности модели, которая заключается в следующем: · проверка статистической значимости уравнения в целом и его отдельных параметров; · проверка соответствия формальных свойств полученных оценок задачам исследования. Этап 5 - экономическая интерпретация и практическое использование модели. Под этим понимается: · определение пространственно-временной устойчивости зависимостей; · оценка прогностических свойств моделей. Рассмотрим некоторые аспекты осуществления процедур стохастического анализа. Во-первых, для анализа следует брать всю имеющуюся совокупность данных. Если она слишком велика, следует внимательно отнестись к составлению выборки из этой совокупности. Выборка должна быть типичной для данного круга явлений. В противном случае анализ не будет иметь смысла, поскольку его результаты не позволят делать значимые выводы для всей совокупности. Во-вторых, в качестве результативных признаков берут либо показатели эффекта (выручка, товарооборот, объем реализации), либо показатели эффективности (рентабельность, оборачиваемость и т.п.). Отметим, что в анализе более предпочтительным является использование относительных показателей. Причин тому несколько, в качестве основных можно назвать их сравнимость и большую близость их распределений нормальному закону (это весьма важно, поскольку нормальность распределения признаков - основная предпосылка корреляционно-регрессионного анализа, речь о котором пойдет далее). В-третьих, в качестве факторных признаков следует брать показатели, комплексно характеризующие изучаемое явление. При этом также лучше ориентироваться на относительные показатели. В-четвертых, существует два подхода к анализу явлений: статический и динамический. Статический подход встречается чаще, поскольку проведение его проще и не требует использования сложных математических методик. Динамический анализ (анализ рядов данных во времени) нередко предполагает рассмотрение автокорреляционных зависимостей, что требует от аналитика владения сложным эконометрическим инструментарием. В-пятых, предварительная обработка рядов данных начинается с установления законов распределения: распределение данных должно быть близко к нормальному. В условиях малых выборок проверка нормальности распределений признаков проводится путем сравнения эмпирических коэффициентов асимметрии и эксцесса (их аналитические выражения приведены в разделе 2.7.3) с их средними квадратическими ошибками (σ As и σ Ex, соответственно). Нормальность распределения подтверждается, если выполнены неравенства: |As| < 3σ As и |Ех| < 3σ Ex. В-шестых, проверка однородности сводится к проверке соотношения Vаr В-седьмых, уточнение перечня факторов может осуществляться, например, путем расчета матрицы парных коэффициентов корреляции. Факторы xi и xj включаются в модель вида y = f(x 1, x 2,..... хп) одновременно, если:
Перебор конкурирующих вариантов моделей, как правило, осуществляется с использованием компьютера. В-восьмых, проверка устойчивости модели осуществляется расчетом ее параметров на усеченной или расширенной совокупности, а также по той же совокупности, но в другом временном интервале. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |