|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Общая постановка задачи линейного программирования (ЗЛП)Найти вектор
при следующих условиях
x1,x2,…,xp≤0, (p≤n) (3)
Вектор Множество всех планов ЗЛП называется областью допустимых планов ЗЛП и обозначается ОДП. Решение ЗЛП находится на границе области ОДП. ^ Оптимальным планом ЗЛП (решением ЗЛП) называется такой план
2. Задача о диете. Исторически одной из первых задач, построенных на решении ЗЛП, являлась задача о диете: задача составления наиболее экономного (т.е. наиболее дешевого) рациона питания, удовлетворяющего определенным требованиям. Подобная задача возникает в связи с необходимостью обеспечить питанием большое число людей, например, в армии, санатории и т.п. Аналогичная задача возникает в сельскохозяйственном производстве: животноводстве, птицеводстве и т.д. Имеется n видов продуктов питания и m химических элементов, необходимых для суточного потребления. ^ Строим экономико-математическую модель. Управляемая переменная xj – количество продукта j-го вида, которое будем приобретать (j=1,2,…,n). Функция цели – суммарная стоимость продуктов питания
Ограничения
xj 0, j=1,2,…,n (3)³ Решить задачу – значит найти вектор Эта задача также является задачей линейного программирования.
3. Задача планирования производства Задача планирования производства содержательно ставится следующим образом. Пусть имеется некоторый экономический объект (предприятие, цех, артель и т. п.). Необходимо спланировать производство n видов продукции, если известно:
^ Строим экономико-математическую модель задачи.
Мы будем максимизировать функцию цели.
4. Задача о раскрое Постановка задачи. На раскрой поступает s различных материалов, требуется изготовить n различных видов изделий, причем продукция выпускается комплектами и в комплект входит bk изделий k -го вида. Каждая единица j -го материала может быть раскроена p различными способами так, что при использовании i -го способа получается aijk единиц изделий k -го вида. Известно, что материала j -го вида имеется cj единиц. Найти план раскроя, обеспечивающий максимальное число комплектов при заданных ограничениях на материал. Модель. Пусть xij – число заготовок j -го материала, раскроенных i -м способом. 5. Это задача нелинейного программирования. Размерность задачи s x p*s. Но ее можно привести к линейному виду. Введем еще одну переменную y – количество комплектов. Тогда получим модель: 6. Полученная модель относится к классу ЛП (ЦЛП). Размерность задачи (s+n) x (p*s+1). Методы решения: в зависимости от необходимости наложения условия целочисленности на переменные задачи либо методы ЛП, либо ЦЛП: метод Гомори, метод ветвей и границ для ЦЛП. 5. Графический метод решения задач линейного программирования Пусть задача линейного программирования задана в двумерном пространстве, то есть ограничения содержат две переменные. Найти минимальное значение функции
при ограничениях вида
и
Линейная функция (1) при фиксированных значениях
Пример графического решения задачи линейного программирования с 6 условиями. Построим многоугольник решений системы ограничений (2) и график линейной функции (1) при Найти точку многоугольника решений, в которой прямая Значения Если многоугольник решений ограничен (см. рисунок), то прямая дважды становится опорной по отношению к многоугольнику решений (в точках Если же многоугольник решений представляет собой неограниченную многоугольную область, то возможны два случая. Случай 1. Прямая Случай 2. Прямая, передвигаясь, всё же становится опорной относительно многоугольника решений. Тогда в зависимости от вида области линейная функция может быть ограниченной сверху и неограниченной снизу, ограниченной снизу и неограниченной сверху, либо ограниченной как снизу, так и сверху. Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (2.961 сек.) |