АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Классификация экономико-математических моделей. Примеры

Читайте также:
  1. Data Mining и Business Intelligence. Многомерные представления Data Mining. Data Mining: общая классификация. Функциональные возможности Data Mining.
  2. FECONCL (ББ. Экономическая классификация)
  3. I Классификация кривых второго порядка
  4. II. Классификация документов
  5. IX.4. Классификация наук
  6. MxA классификация
  7. Аденовирусная инфекция. Этиология, патогенез, классификация, клиника фарингоконъюнктивальной лихорадки. Диагностика, лечение.
  8. Акустические колебания, их классификация, характеристики, вредное влияние на организм человека, нормирование.
  9. Аналитическая классификация катионов
  10. Аналитические методы при принятии УР, основные аналитические процедуры, признаки классификации методов анализа, классификация по функциональному признаку.
  11. Антраценпроизводные: строение, классификация, био-фармакологическое действи
  12. Атомные нарушения структуры кристалла. Классификация дефектов структуры.

Математические модели экономических процессов и явлений более кратко можно назвать экономико-математическими моделями. Для классификации этих моделей используются разные основания.

По целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые в исследованиях общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач (модели экономического анализа, прогнозирования, управления).

Экономико-математические модели могут предназначаться для исследования разных сторон народного хозяйства (в частности, его производственно-технологической, социальной, территориальной структур) и его отдельных частей. При классификации моделей по исследуемым экономическим процессам и содержательной проблематике можно выделить модели народного хозяйства в целом и его подсистем - отраслей, регионов и т.д., комплексы моделей производства, потребления, формирования и распределения доходов, трудовых ресурсов, ценообразования, финансовых связей и т.д.

Остановимся более подробно на характеристике таких классов экономико-математических моделей, с которыми связаны наибольшие особенности методологии и техники моделирования.

В соответствии с общей классификацией математических моделей они подразделяются на функциональные и структурные, а также включают промежуточные формы (структурно-функциональные). В исследованиях на народнохозяйственном уровне чаще применяются структурные модели, поскольку для планирования и управления большое значение имеют взаимосвязи подсистем. Типичными структурными моделями являются модели межотраслевых связей. Функциональные модели широко применяются в экономическом регулировании, когда на поведение объекта ("выход") воздействуют путем изменения "входа". Примером может служить модель поведения потребителей в условиях товарно-денежных отношений. Один и тот же объект может описываться одновременно и структурой, и функциональной моделью. Так, например, для планирования отдельной отраслевой системы используется структурная модель, а на народнохозяйственном уровне каждая отрасль может быть представлена функциональной моделью.

Выше уже показывались различия между моделями дескриптивными и нормативными. Дескриптивные модели отвечают на вопрос: как это происходит? или как это вероятнее всего может дальше развиваться?, т.е. они только объясняют наблюдаемые факты или дают вероятный прогноз. Нормативные модели отвечают на вопрос: как это должно быть?, т.е. предполагают целенаправленную деятельность. Типичным примером нормативных моделей являются модели оптимального планирования, формализующие тем или иным способом цели экономического развития, возможности и средства их достижения.

Применение дескриптивного подхода в моделировании экономики объясняется необходимостью эмпирического выявления различных зависимостей в экономике, установления статистических закономерностей экономического поведения социальных групп, изучения вероятных путей развития каких-либо процессов при неизменяющихся условиях или протекающих без внешних воздействий. Примерами дескриптивных моделей являются производственные функции и функции покупательского спроса, построенные на основе обработки статистических данных.

Является ли экономико-математическая модель дескриптивной или нормативной, зависит не только от ее математической структуры, но от характера использования этой модели. Например, модель межотраслевого баланса дескриптивна, если она используется для анализа пропорций прошлого периода. Но эта же математическая модель становится нормативной, когда она применяется для расчетов сбалансированных вариантов развития народного хозяйства, удовлетворяющих конечные потребности общества при плановых нормативах производственных затрат.

Многие экономико-математические модели сочетают признаки дескриптивных и нормативных моделей. Типична ситуация, когда нормативная модель сложной структуры объединяет отдельные блоки, которые являются частными дескриптивными моделями. Например, межотраслевая модель может включать функции покупательского спроса, описывающие поведение потребителей при изменении доходов. Подобные примеры характеризуют тенденцию эффективного сочетания дескриптивного и нормативного подходов к моделированию экономических процессов. Дескриптивный подход широко применяется в имитационном моделировании.

По характеру отражения причинно-следственных связей различают модели жестко детерминистские и модели, учитывающие случайность и неопределенность. Необходимо различать неопределенность, описываемую вероятностными законами, и неопределенность, для описания которой законы теории вероятностей неприменимы. Второй тип неопределенности гораздо более сложен для моделирования.

По способам отражения фактора времени экономико-математические модели делятся на статические и динамические. В статических моделях все зависимости относятся к одному моменту или периоду времени. Динамические модели характеризуют изменения экономических процессов во времени. По длительности рассматриваемого периода времени различаются модели краткосрочного (до года), среднесрочного (до 5 лет), долгосрочного (10-15 и более лет) прогнозирования и планирования. Само время в экономико-математических моделях может изменяться либо непрерывно, либо дискретно.

Модели экономических процессов чрезвычайно разнообразны по форме математических зависимостей. Особенно важно выделить класс линейных моделей, наиболее удобных для анализа и вычислений и получивших вследствие этого большое распространение. Различия между линейными и нелинейными моделями существенны не только с математической точки зрения, но и в теоретико-экономическом отношении, поскольку многие зависимости в экономике носят принципиально нелинейный характер: эффективность использования ресурсов при увеличении производства, изменение спроса и потребления населения при увеличении производства, изменение спроса и потребления населения при росте доходов и т.п. Теория "линейной экономики" существенно отличается от теории "нелинейной экономики". От того, предполагаются ли множества производственных возможностей подсистем (отраслей, предприятий) выпуклыми или же невыпуклыми, существенно зависят выводы о возможности сочетания централизованного планирования и хозяйственной самостоятельности экономических подсистем.

По соотношению экзогенных и эндогенных переменных, включаемых в модель, они могут разделяться на открытые и закрытые. Полностью открытых моделей не существует; модель должна содержать хотя бы одну эндогенную переменную. Полностью закрытые экономико-математические модели, т.е. не включающие экзогенных переменных, исключительно редки; их построение требует полного абстрагирования от "среды", т.е. серьезного огрубления реальных экономических систем, всегда имеющих внешние связи. Подавляющее большинство экономико-математических моделей занимает промежуточное положение и различаются по степени открытости (закрытости).

Для моделей народнохозяйственного уровня важно деление на агрегированные и детализированные.

В зависимости от того, включают ли народнохозяйственные модели пространственные факторы и условия или не включают, различают модели пространственные и точечные.

Таким образом, общая классификация экономико-математических моделей включает более десяти основных признаков. С развитием экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей (особенно смешанных типов) и новых признаков их классификации осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.

В виде примеров можно привести простейшие модели – транспортная задача, задача распределения ресурсов, и прочее.

Дескриптивные модели представляют собой в основном статистические модели (кривые роста, регрессионные линии), предназначенные для исследования объектов путем установления количественных соотношений между их характеристиками или параметрами.

Примеры:

1. Требуется определить зависимость потребления бытовых услуг от уровня дохода населения, обеспеченности бытовыми предметами на душу населения и других факторов потребления. Для этого составляют регрессионное уравнение

где Y – потребление бытовых услуг на душу населения; - факторы потребления; - коэффициенты уравнения. Если известны коэффициенты, то зависимость потребления бытовых услуг от принятых факторов считается определенной. Она отражает реальную ситуацию только в среднем, или в статистическом смысле.

2. Требуется определить количество заместителей директора для типовых структур управления предприятием. В этом случае проводят статистическое исследование численности указанной категории работников на существующих предприятиях и выводят степенное уравнение. При определенной специализации количество заместителей директора определяют по формуле

,

где - численность промышленного персонала; - основные и оборотные фонды.

Модели без управления применяются для изучения фактически существующих процессов, без вмешательства в их течение. К моделям без управления принадлежат модели экономики страны, расширенного воспроизводства, прогнозирования рождаемости, численности населения и т.д. Как правило, они дают общее представление об объекте. Процессы в моделируемом объекте отображаются в агрегированном виде и максимально обобщены. Поэтому модели без управления не дают полного представления об объекте моделирования и пригодны для изучения только самых общих изменений и тенденций. Модели без управления позволяют изучать явления в целом, комплексно и устанавливают общие фундаментальные свойства объектов и процессов.

Оптимизационные модели. Их появление и применение вызвано необходимостью решения практических задач экономики и техники. Особенностью оптимизационных моделей является целенаправленность решения и явная оценка эффективности (качества) различных вариантов решения. В отличие от моделей без управления оптимизационные модели предполагают выявление цели управления и построение целевой функции.

Суть получения оптимального решения на модели заключается в выборе из множества возможных решений одного, обеспечивающего максимальную эффективность.

Задача о пользе услуг. Построим оптимизационную модель, у которой некоторые переменные могут принимать только целые значения. Она называется целочисленной задачей линейного программирования. Допустим, перед человеком стоит вопрос, какими видами бытовых услуг - - ему следует воспользоваться, чтобы максимально облегчить свой быт (сэкономить время). Предполагается, что сумма денег, которой он располагает равна d. Можно составить такой список:

Класс оптимизационных моделей очень широк. Приведенные выше задачи относятся к линейному программированию. Существуют также модели динамического программирования, в которых требуется отыскать не одно, а несколько решений, например, решения принимаемые в различные моменты времени; экстремальные модели, позволяющие найти экстремальное значение одного или нескольких параметров объекта; гомеостатические модели, предназначенные для удержания параметров объекта в определенных пределах при наличии каких-либо возмущающих воздействий, и т.д.

Игровые модели. В некоторых ситуациях оптимизационные модели не могут быть применены непосредственно. В основном в тех ситуациях, когда система содержит подсистемы с разными и отчасти противоречивыми целями. Например, при описании целенаправленной деятельности коллективов людей, принятии политических и экономических решений в условиях неопределенности необходимо анализировать интересы и цели объектов, вступающих в контакт.

Случаи, когда для объекта моделирования характерно наличие противодействующих сил или неопределенности параметров, свойств или поведения, рассматриваются теорией игр. Это теория математических моделей принятия оптимальных решений в условиях конфликта или неопределенности. Под конфликтом следует понимать любое разногласие, возникающее вследствие несовпадения интересов.

Большое значение имеет понятие неопределенности. Рассмотрим на примерах. При моделировании спроса на какой-либо товар могут быть известны только либо верхний и нижний пределы колебания спроса, либо статистическое распределение возможных значений спроса. Тогда в первом случае имеет место статистическая неопределенность, когда неизвестен даже закон распределения событий (значений спроса), а во втором – статистическая неопределенность, соответствующая случаю, при котором нельзя точно назвать значение спроса, хотя закон распределения известен. Неопределенности такого рода могут возникнуть в результате действий конкурента, удовлетворяющих какую-то часть спроса, или вследствие «игры природы» (изменения климатических, социальных и других условий). В любой игре имеются следующие элементы: множество всех игроков , где i – произвольный игрок. Всякий игрок имеет в своем распоряжении множество стратегий поведения, или возможных действий, .

Процесс игры заключается в выборе каждым игроком одной определенной стратегии , обеспечивающей игроку, например, максимальный выигрыш . Здесь функция называется функцией выигрыша игрока. Таким образом, налицо множество стратегий игроков называемое ситуацией, в которой каждый игрок или их группа (коалиция) имеет какой-либо выигрыш (проигрыш).

Игры бывают бескоалиционными, когда целью каждого участника является получение максимального индивидуального выигрыша, и коалиционные, связанные с обеспечением максимального выигрыша для всей коалиции игроков. Если выигрыш одного игрока равен проигрышу другого при любой стратегии, то игра называется антагонистической. Если число стратегий одного игрока конечно, то такая игра носит название матричной.

Основные принципы определения оптимального поведения игроков сводятся к принципам устойчивости, которые состоят в том, чтобы отклонение от выбранной оптимальной стратегии уменьшает выигрыш игрока. Например, для бескоалиционной игры наилучшая стратегия поведения соответствует принципу равновесия, при котором ни одному игроку не выгодно менять стратегию, если у остальных игроков остаются неизменными.

Имитационные системы. Применение оптимизационных и игровых моделей в практических задачах встречает затруднение, когда заходит речь о моделировании «больших систем». К ним относятся социально-экономические системы, характеризуемые большим числом параметров, сложным переплетением интересов, неопределенной структурой и многочисленными целями. Объекты такого типа плохо поддаются формализации и математическому описанию на основе аппарата оптимизационных и игровых моделей. Сложность построения моделей «больших систем» заключается прежде всего в трудности постановки или формулирования задачи моделирования, которая требует комплексного системного описания наиболее важных сторон объекта.

Имитационное моделирование представляет собой систему, состоящую из совокупностей следующих элементов:

· имитационных моделей, отображающих определенные черты, свойства или части «большой системы» и позволяющих отвечать на вопрос: что будет при данных условиях и принятом решении (прямя задача моделирования)?

· экспертов и экспертных процедур, необходимых для анализа и оценки различных решений, исключения заведомо слабых решений, построения «сценариев» развития событий, выработки целей и критериев;

· «языков ЭВМ», на основе которых осуществляется двусторонний контакт экспертов с ЭВМ. Эксперт задает исходные данные, меняет структуру моделей, формулирует вопросы ЭВМ при помощи специальных языков моделирования.

Имитационные модели представляют собой программы для компьютера, описывающие поведение компонентов системы и взаимодействие между ними. Расчеты при различных исходных данных позволяют имитировать динамические процессы, происходящие в реальной систем.

Математический аппарат, используемый для построения имитационных моделей, может быть самым разнообразным, например, теория массового обслуживания, теория агрегативных систем, теория автоматов, теория дифференциальных уравнений и т.д. Имитационные модели обычно требуют статистической обработки результатов моделирования, поэтому в основу всякой имитации входят методы теории вероятностей и математической статистики.

Экспертные процедуры используют коллективный опыт людей и предназначены для усреднения мнений и получения объективной оценки какого-либо события или явления. Например, для определения пропорций развития отраслевых групп обслуживания экспертам раздают анкеты определенного образца и прелагают ознакомиться со «сценарием» развития сферы обслуживания населения. «Сценарий» представляет собой прогноз определенного рода состояния развития общественных потребностей на длительную перспективу, включая численность населения, его доходы и расходы по статьям затрат, жилищные условия, внедрение в практику новой техники и технологий, совершенствование видов и форм обслуживания и т.п.

После ознакомления со «сценарием» эксперты выражают свое мнение в виде баллов. Затем анкеты собирают, и результаты экспертного анализа усредняют по каждой отраслевой группе и нормируют, т.е. баллы по каждой отраслевой группе делят на их общую сумму. Полученные нормированные баллы отражают желаемые пропорции развития отраслевых групп обслуживания. Можно осуществить учет компетентности эксперта, проставив ему соответствующий «вес», аналогичный баллам.

При оценке качества функционирования какой-либо имитационной модели эксперты определяют, какие параметры модели главные, а какие – второстепенные; устанавливают желаемые пределы изменения параметров; осуществляют выбор лучшего варианта модели. В задачи эксперта входит также изменение условий моделирования в тех случаях, когда после проведения модельных экспериментов выявляются новые неучтенные факторы.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.)