АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основное уравнение нерелятивистской квантовой механики___________________

Читайте также:
  1. E) Для фиксированного предложения денег количественное уравнение отражает прямую взаимосвязь между уровнем цен Р и выпуском продукции Y.
  2. I.I.I. Основное тождество национальных счетов
  3. I.Основное городское благоустройство (базис)
  4. II. ОСНОВНОЕ ПОБУЖДЕНИЕ К НАУКЕ
  5. II. ОСНОВНОЕ ПОНЯТИЕ ИНФОРМАТИКИ – ИНФОРМАЦИЯ
  6. IV. УРАВНЕНИЕ ГАМЛЕТА
  7. V2: Волны. Уравнение волны
  8. V2: Уравнение Шредингера
  9. Адиабатический процесс. Уравнение адиабаты (Пуассона). Коэффициент Пуассона.
  10. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧ НА УРАВНЕНИЕ ТЕПЛОВОГО БАЛАНСА
  11. В декартовых координатах каждая прямая определяется уравнением первой степени с двумя переменными и обратно: каждое уравнение первой степени
  12. В простом случае обычное дифференциальное уравнение имеет вид

Статистическое толкование волн де Бройля 6.22 и соотношение неопределенностей Гейзенберга 6.18 привели к выводу, что уравнением движе­ния в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытека­ли наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции ЧХх, у, г, I), так как именно она, или, точнее, величина Iх?!2, определяет вероятность пребывания частицы в момент времени I в объеме (IV, т. е. в области с координатами х и х + Ах, у иг/ + Ау, гшг + Аг. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему элек­тромагнитные волны.

Временное уравнение Шредингера__________________________________________________


 


Это уравнение постулируется, а его правильность подтверждается согласием с опытом получаемых с его помощью результатов.


Условия, накладываемые на волновую функцию______________________________________

♦ Волновая функция должна: быть конечной, однозначной и непрерывной.

♦ Производные —должны быть непрерывны.

♦ Функция |Ψ|2 должна быть интегрируема (это условие сводится к усло­вию нормировки вероятностей 6.22).

♦ Уравнение Шредингера справедливо для нерелятивистских частиц (скорости υ «с). [ , т — масса частицы, Δ — оператор Лапласа , i- мнимая единица, U(x,y,z,t) — потенциальная функция частицы в силовом поле, в котором она движется, Ψ(x,y,z,t) — искомая волновая функция частицы]


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)