|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Результаты измерения по шкале порядкаПорядковая шкала (неметрическая), или ранговая шкала - это шкала, классифицирующая по принципу «больше – меньше». Как следует из названия, измерение в этой шкале предполагает приписывание объектам чисел в зависимости от степени выраженности измеряемого свойства. Если в шкале наименований было безразлично, в каком порядке мы расположим классификационные ячейки, то в порядковой шкале они образуют последовательность от ячейки «самое малое значение» к ячейке «самое большое значение» (или наоборот). Ячейки теперь уместнее называть классами, поскольку по отношению к классам употребимы определения «низкий», «средний» и «высокий» класс (ранг), или 1-й, 2-й, 3-й класс, и т.д. В порядковой шкале должно быть не менее трех классов например «положительная реакция - нейтральная реакция - отрицательная реакция» или «подходит для занятия вакантной должности - подходит с оговорками - не подходит» и т. п. В порядковой шкале мы не знаем истинного расстояния между классами а знаем лишь, что они образуют последовательность. Например, классы «подходит для занятия вакантной должности» и «подходит с оговорками» могут быть реально ближе друг к другу, чем класс «подходит с оговорками» к классу «не подходит». От классов легко перейти к числам, если мы условимся считать, что низший класс получает ранг 1, средний класс - ранг 2, а высший класс - ранг 3, или наоборот. Чем больше классов в шкале, тем больше у нас возможностей для математической обработки полученных данных и проверки статистических гипотез. Например, мы можем оценить различия между двумя выборками испытуемых по преобладанию у них более высоких или более низких рангов или подсчитать коэффициент ранговой корреляции между двумя переменными, измеренными в порядковой шкале, допустим, между оценками профессиональной компетентности руководителя, данными ему разными экспертами. Итак, единица измерения в шкале порядка - расстояние в 1 класс или в 1 ранг, при этом расстояние между классами и рангами может быть разным (оно нам неизвестно). Результат измерений представлен в этой шкале, если между ее градациями определено отношение «больше/меньше», но не определена разность между градациями. Примеры величин в такой шкале - субъективная оценка трудности задания (человек может сказать, какое из предложенных заданий труднее, может расположить их в порядке возрастания трудности, но ответить на вопрос «на сколько» численно одно задание труднее другого - невозможно), класс автомобиля (можно сказать, что S-класс выше C-класса, но невозможно посчитать разность между этими градациями). В этой шкале выражены результаты ответов на задания типа «multiple choice» в тех случаях, если варианты ответов можно расположить в порядке возрастания по ключевому для данного измерения признаку («По выходным я просыпаюсь: А: до 9 часов утра, Б: с 9 до 11 часов утра, В: после 11 часов»). Результаты ответов на задания, требующих сортировки объектов по (например) степени привлекательности или оценки какого-либо объекта по 5-балльной шкале (как и школьные 5-балльные оценки) - также выражены в этой шкале.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |