АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Расчет напряженности электрического поля

Читайте также:
  1. I. Расчет накопительной части трудовой пенсии.
  2. I. Расчет производительности технологической линии
  3. I. Расчет размера страховой части трудовой пенсии.
  4. II. Определяем годовые и расчетные часовые расходы газа на бытовое и коммунально - бытовое потребление для населенного пункта
  5. II. Расчетная часть задания
  6. II. Синапсы электрического типа
  7. III. Расчет процесса в проточной части ЦВД после камеры смешения.
  8. IV. Расчет продуктов сгорания топлива.
  9. IV. ТИПОВОЙ ПРИМЕР РАСЧЕТОВ.
  10. RPPAYSP (РП. Спецификация расчетов)
  11. V. Расчет теплотехнических параметров смеси, образовавшейся в результате горения.
  12. V.2.1. Расчетные длины участков ступенчатой колонны

А.В. Дюндин

Основы теоретической физики

Электродинамика и СТО

Смоленск

Издательство СмолГУ


Федеральное агентство по образованию

Смоленский государственный университет

Кафедра физики

А.В. Дюндин

Основы теоретической физики

Электродинамика и СТО

Учебно-методическое пособие

Смоленск

Издательство СмолГУ


УДК 530.1 (075.8)

ББК 22.313я73

Д 964

Рецензент:

Дюндин А.В.

Д 964 Основы теоретической физики. Электродинамика и СТО: Учебно-методическое пособие / А.В. Дюндин; Смол. гос. ун-т. – Смоленск: Изд-во СмолГУ, 2008. – 60 с.

Данное пособие предназначено для подготовки к практическим занятиям студентов специальности «Физика и Информатика», изучающих курс «Основы теоретической физики. Электродинамика и СТО» и содержит упражнения

 

 

УДК 530.1 (075.8)

ББК 22.313я73

© Дюндин А.В., 2008

© Издательство СмолГУ, 2008


Введение

Данное учебно-методическое пособие предназначено для студентов 4 курса специальности «Физика и Информатика» физико-математического факультета. В пособии приведены упражнения, выполнение которых предусмотрено на практических занятиях и в процессе самостоятельной подготовки к ним. Краткие теоретические сведения и алгоритмы выполнения некоторых упражнений облегчают самостоятельное выполнение упражнений.

Большая часть практических занятий рассчитана на 2 часа, однако на изучение материала некоторых тем оставлено больше времени – 4 часа.

Часть предлагаемых к решению задач включена в практическую часть экзамена.

Список рекомендуемой литературы

Основная литература

1. Матвеев А.Н. Электричество и магнетизм: Учеб пособие для студентов вузов. / А.Н. Матвеев; МГУ им. А.В. Ломоносова. – М.: Оникс, 21 век; Мир и образование, 2005.

2. Maтвeeв А.Н. Электродинамика и теория относительности. / А.Н. Матвеев. – М.: Высшая школа. – 1964.

3. Тамм И.Е. Основы теория электричества. /И.Е. Тамм. – М.: Наука, 1976.

Дополнительная литература

4. Ландау Л.Д. Краткий курс теоретической физики. / Л.Д. Ландау, Е.М. Лифшиц. – М.: Наука, 1972.

5. Гершензон Е.М. Электродинамика. Учеб. пособие для студ. пед. вузов. / Е.М. Гершензон, Н.Н. Малов, А.Н. Мансуров.– М.: Академия, 2002.

6. Наумов А.Н. Электродинамика: Учеб. пособие./ А.И. Наумов. – М.: Прометей, 1989.

7. Компанеец А.С. Курс теоретической физики. / А.С. Компанеец. – М. Просвещение, 1972.

8. Савельев И.В. Основы теоретической физики: Учебник для студентов нетеор. спец вузов. / И.В. Савельев. – СПб: Лань. – Т1: Механика. Электродинамика. – 2005. – 496 с.

 


 

Практическое занятие №1

Расчет напряженности электрического поля

Краткие теоретические сведения

Напряженность электрического поля элементарного заряда рассчитывается по формуле

, (1.1)

где – коэффициент, зависящий от выбора системы единиц, – радиус-вектор, проведенный из в точку наблюдения (точку, в которой мы рассчитываем электрическое поле). Заметим, что в случае вектор напряженности электрического поля сонаправлен с радиус-вектором (), иначе – .

Если поле создается несколькими зарядами, то напряженность этого поля находим суммированием

, (1.2)

где – вектор напряженности электрического поля -го заряда в точке наблюдения. Приведенная выше формула является математической записью принципа суперпозиции: напряженность поля любого числа зарядов равна сумме напряженностей полей каждого из зарядов при отсутствии всех других.

Если заряд непрерывно распределен по линии, поверхности или объему, напряженность электрического поля рассчитывается с помощью интегрирования (соответственно по линии, поверхности или объему):

, (1.3)

,(1.4)

, (1.5)

где , , и – линейная, поверхностная и объемная плотности заряда, – радиус-вектор, проведенный от элемента линии (поверхности, объема) в точку наблюдения.

В соответствии с теоремой Гаусса поток вектора напряженности электрического поля через замкнутую поверхность равен отношению заряда, находящегося внутри этой поверхности, к электрической постоянной , то есть

. (1.6)

На границе раздела двух диэлектриков тангенциальные (параллельные касательной к поверхности в данной точке) составляющие вектора напряженности электрического поля непрерывны, а нормальные составляющие терпят разрыв

, (1.7)

, (1.8)

где – поверхностная плотность заряда на границе раздела диэлектриков.

Литература: [1], глава 2, §13;[3], глава 1, §2, 3.

Темы для развернутых ответов

1. Напряженность электрического поля. Расчет напряженности по определению.

2. Физическая теорема Гаусса и ее применение для расчета напряженности электрического поля.

3. Граничные условия для вектора напряженности электрического поля.

Основной блок задач

1. Дана бесконечная нить, заряженная с поверхностной плотностью заряда . Точка наблюдения находится на расстоянии от нити. Рассчитайте напряженность электрического поля в данной точке.

2. Дана бесконечная плоскость, равномерно заряженная по поверхности с плотностью заряда . Найдите напряженность электрического поля в точке наблюдения , не принадлежащей плоскости. Попытайтесь выполнить решение вторым способом – с опорой на теорему о граничном условии.

3. По шару радиуса равномерно распределен заряд с плотностью . Рассчитайте напряженность электрического поля данного шара.

4. По поверхности сферы радиуса равномерно распределен заряд с плотностью . Рассчитайте напряженность электрического поля данной сферы.

5. Дана полусфера, равномерно заряженная по поверхности с плотностью заряда . Найдите напряженность электрического поля в центре полусферы.

6. Дана нить, равномерно заряженная по длине с линейной плотностью заряда . Параллельно нити на расстоянии расположен квадрат. Сторона квадрата . Вычислите поток вектора напряженности электрического поля через поверхность данного квадрата.

7. Дана бесконечная цилиндрическая поверхность с радиусом основания и равномерно заряженная по поверхности с плотностью заряда . На расстоянии от оси находится точка . Вычислите напряженность электрического поля в данной точке.

Дополнительный блок задач

8. Тонкое круглое кольцо радиуса состоит из двух равномерно и противоположно заряженных полуколец с линейными плотностями заряда и . Найдите напряженность электрического поля на оси кольца.

9. Нить расположена по дуге окружности радиусом и видна из ее центра под углом . Нить заряжена с линейной плотностью заряда . Найдите напряженность электрического поля в центре окружности. Рассмотрите предельный случай – нить расположена по окружности радиуса .

10. Найдите напряженность электрического поля в центре шара радиуса , объемная плотность которого равна , где – расстояние от центра шара до точки наблюдения.

11. Две длинные параллельные нити равномерно заряжены с линейной плотностью заряда 0,5 мк Кл/м каждая. Расстояние между нитями равно 0,45 м. Найдите максимальное значение напряженности электрического поля в плоскости симметрии этой системы.

12. Полубесконечный цилиндр радиуса заряжен равномерно по поверхности так, что на единицу его длины приходится заряд . Найдите напряженность электрического поля в центре основания цилиндра.

 

Практическое занятие №2


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)