АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Расчёт динамической стойкости шин

Читайте также:
  1. Внешние характеристики и методика расчётов выпрямителя
  2. Вынужденные колебания. Расчёт амплитуды и фазы
  3. Госпитальная заболеваемость: назначение, единица наблюдения, учётные и отчётные документы, расчёт показателей.
  4. Если посмотреть на эту формулу более внимательно, то можно увидеть что соответствует формуле расчёта ВВП по расходам.
  5. Игра буксирной линии ее элементы и расчёты
  6. Классификация промышленных зданий по степени огнестойкости
  7. Логические элементы на ключах с динамической нагрузкой
  8. Методы расчёта ВВП
  9. Методы расчёта линейных электрических цепей
  10. Методы расчёта электродинамических усилий (ЭДУ)
  11. Неосознаваемый конфликт: метод подпороговой психодинамической активации
  12. Неосознаваемый конфликт: метод подпороговой психодинамической активации.

 

Механический резонанс возникает в результате появления резонанса между гармонически меняющейся электродинамической силой и собственными механическими колебаниями деталей токоведущей цепи аппарата. В случае, когда частота переменной составляющей силы близка к собственной частоте механических колебаний, аппарат может разрушиться вследствие явления резонанса. Для шин прямоугольного и круглого сечения эту частоту можно определить приближённо

где:

ν – плотность материала шины;

g - ускорение свободного падения;

l - пролет между изоляторами;

Е - модуль упругости материала шин;

J - момент инерции сечения шины;

q - сечение шины;

к - коэффициент, зависящий от характера крепления шин.

К шине как балке, закреплённой на концах, прикладываются максимальные расчётные усилия, находятся механические напряжения в ней и усилия, действующие на изоляторы. Максимальное механическое напряжение в шине, Па

где М – максимальный изгибающий момент, Нм; W – момент сопротивления, м ;

l – длина свободного пролёта шины, м; - наибольшее значение удельной электродинамической нагрузки от соседней фазы, Н/м.

Нагрузка на изолятор

F = l.

Прочность изолятора проверяется неравенством

F = ,


 

где - минимальное разрушающее усилие, допустимое для изолятора, Н (берётся по каталогу)

Н – высота изолятора,м;

- расстояние от основания изолятора до центра тяжести поперечного сечения шины, м.


 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)