АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Методы расчёта электродинамических усилий (ЭДУ)

Читайте также:
  1. I. День максимальных усилий
  2. II. Методы непрямого остеосинтеза.
  3. IV. Современные методы синтеза неорганических материалов с заданной структурой
  4. А. Механические методы
  5. Автоматизированные методы анализа устной речи
  6. Адаптивные методы прогнозирования
  7. АДМИНИСТРАТИВНО-ПРАВОВЫЕ МЕТОДЫ УПРАВЛЕНИЯ
  8. АДМИНИСТРАТИВНЫЕ МЕТОДЫ УПРАВЛЕНИЯ, ИХ СУЩНОСТЬ, ДОСТОИНСТВА И НЕДОСТАТКИ
  9. Административные, социально-психологические и воспитательные методы менеджмента
  10. Активные групповые методы
  11. Активные индивидуальные методы
  12. Акустические методы

 

а) Методы расчёта. Для расчета э.д.у. используются два метода.

В первом – сила рассматривается как результат взаимодействия проводника с током и магнитного поля по правилу Ампера. Если элементарный проводник с током находится в магнитном поле с индукцией , создаваемой другими проводниками (рис. 1), то сила , действующая на этот элемент, равна:

Рис. 1. Направление ЭДУ, действующего на элемент с током


 

где:

i – ток;

β – угол между векторами элемента dl и индукции B, измеряемый углом поворота вектора dl до вектора B по кратчайшему расстоянию.

За направление dl принимаем направление тока в элементе. Направление индукции B, создаваемой другим проводником, определяется по правилу Буравчика, а направление силы – по правилу левой руки.

Полная сила, действующая на проводник длиной l, определится по формуле

.

В случае любого расположения проводников в одной плоскости β = 90°, то выражение имеет вид

.

Описанный метод рекомендуется применять тогда, когда можно аналитически найти индукцию в любой точке проводника, для которого необходимо определить силу.

Второй метод основан на использовании энергетического баланса системы проводников с током. Если пренебречь электростатической энергией системы и принять, что при деформации токоведущих контуров или при их перемещении под действием э.д.у. токи во всех контурах остаются неизменными, то силу можно найти по уравнению

,

где:

W - электромагнитная энергия;

X - возможное перемещение в направлении действия силы.

Электромагнитная энергия системы обусловлена как энергией магнитного поля каждого изолированного контура, так и энергией, определяемой магнитной связью между контурами, и для двух взаимосвязанных контуров равна:

,

где:

и - индуктивности контуров;

и - токи, протекающие в них;

М - взаимная индуктивность.

Первые два члена уравнения определяют энергию независимых контуров, а третий член дает энергию, обусловленную их магнитной связью.

Уравнение дает возможность рассчитать как силы, действующие в.изолированном контуре, так и силу взаимодействия контура со всеми остальными.

Для определения сил внутри одного независимого контура пользуемся уравнением


 

При расчете силы взаимодействия контуров мы считаем, что энергия изменяется только в результате изменения взаимного расположения контуров. При этом энергия, обусловленная собственной индуктивностью, считается неизменной. В данном случае, сила взаимодействия между контурами равна

.

Энергетический метод удобен, когда известна аналитическая зависимость индуктивности или взаимной индуктивности от геометрических размеров.

б) Направление действия ЭДУ. Найдем направление силы, действующей на элемент d11 с током , (рис.2).

Рис. 2.

 

Линия индукции , создаваемая током , является окружностью с радиусом r, лежащей в плоскости, перпендикулярной . Направление силы dF определяется по правилу левой руки и показано на рис. 2.

Для плоской задачи, когда все проводники лежат в одной плоскости, результирующая на проводник, всегда перпендикулярна к этой плоскости, а сила лежит в плоскости. Направления э.д.у. для некоторых случаев расположения проводников в одной плоскости показаны на рис. 3.

Согласно положительному направлению силы соответствует возрастание энергии системы , т. е. сила, действующая на токоведущие части, направлена так, чтобы электромагнитная энергия системы возрастала.

Для кольцевого контура

где:

ψ - потокосцепление;

Φ – поток;

ω - число витков в контуре.

В этом случае э.д.у. действует по радиусу, растягивая контур, т.к. при этом индуктивность, потокосцепление и поток возрастают.

В случае двух витков или катушек с разными направлениями токов сила F


 

Рис. 3,

 

направлена так, чтобы отбросить витки друг от друга, т.к. потокосцепление увеличивается с ростом расстояния между ними. Минимальное потокосцепление будет иметь место при расстоянии между ними равном нулю. Если токи текут в одинаковом направлении, то витки притягиваются.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)