АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Закон Сох. Импульса. Центр Масс. Уравнение движение тела переменной массы

Читайте также:
  1. B) Наличное бытие закона
  2. Circle(X, Y, R); - построить окружность с центром X, Y и радиусом R.
  3. II закон Кирхгофа
  4. II. Законодательные акты Украины
  5. II. Законодательство об охране труда
  6. II.3. Закон как категория публичного права
  7. III. Государственный надзор и контроль за соблюдением законодательства об охране труда
  8. IX. У припущенні про розподіл ознаки по закону Пуассона обчислити теоретичні частоти, перевірити погодженість теоретичних і фактичних частот на основі критерію Ястремського.
  9. IX.3.Закономерности развития науки.
  10. R – відстань від епіцентру вибуху,м.
  11. Root(Выражение, имя переменной)
  12. XIV.5. Концентраційні ланцюги

Импульсом называют векторную величину, равную произведению массы тела на ее скорость:

При взаимодействии тел замкнутой системы полный импульс системы остается неизменным:

Закон сохранения импульса есть следствие второго и третьего законов Ньютона. Пример использования закона сохранения импульса.

 

Центром масс тела, состоящего из n материальных точек, называется точка (в геометрическом смысле), радиус-вектор которой определяется формулой:

Здесь R1 – радиус-вектор точки с номером i (i = 1, 2,... n).

Уравнение Мещерского — основное уравнение в механике тел переменной массы, полученное И. В. Мещерским в 1897 году[1] для материальной точки переменной массы (состава).

Уравнение обычно записывается в следующем виде:

где:

— масса материальной точки, изменяющаяся за счет обмена частицами с окружающей средой, в произвольный момент времени t;

— скорость движения материальной точки переменной массы;

— результирующая внешних сил, действующих на материальную точку переменной массы со стороны её внешнего окружения (в том числе, если такое имеет место, и со стороны среды, с которой она обменивается частицами, например электромагнитные силы — в случае массообмена с магнитной средой, сопротивление среды движению и т. п.);

— относительная скорость присоединяющихся частиц;

— относительная скорость отделяющихся частиц;

, — скорости массообмена присоединяющихся и отделяющихся частиц.

Формула Циолковского может быть получена как результат решения этого уравнения.

Величина:

называется «реактивной силой».

Вывод уравнения Мещерского из второго закона Ньютона в форме

где масса материальной точки считается непостоянной,


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)