|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Разрядные характеристики линейных и аппаратных изоляторов
Электрическая прочность внешней изоляции линейных и аппаратных изоляторов существенно зависит от состояния их поверхностей и от вида воздействующего напряжения. Перекрытие изолятора наружной установки может произойти и при рабочем напряжении, если его поверхности достаточно сильно загрязнены и увлажнены. Поверхности изоляторов загрязняются и увлажняются неравномерно. Кроме того, при сложной форме изолятора разряд на отдельных участках может отрываться от поверхности и развиваться по наикратчайшему пути в воздухе. В результате эффективно используется не вся геометрическая длина пути утечки LУ,а только ее часть. Поэтому напряжение перекрытия изоляторов, загрязненных в реальных условиях эксплуатации, пропорционально не геометрической, а эффективной длине пути утечки (16), где k — поправочный коэффициент, иногда называемый коэффициентом формы изолятора. Для гирлянд и колонок, состоящих из п изоляторов, (17), где LУИ— геометрическая длина утечки одного изолятора, входящего в состав гирлянды или колонки. Коэффициент k зависит не только от формы изолятора, но и от условий его загрязнения, т. е. от скорости ветра и интенсивности мокрых осадков, от адгезионных и других свойств загрязняющих веществ. Поэтому значения k определяют экспериментальным путем. При отсутствии опытных данных k, можно приближенно оценить по эмпирическим формулам: для изоляторов стержневого типа (18); для изоляторов тарельчатого типа (19) где НФ — длина фарфорового тела изолятора стержневого типа; D — диаметр тарелки изолятора. Эффективная длина LЭФпути утечки является важнейшей характеристикой изолятора наружной установки, определяющей его способность длительно без перекрытий выдерживать рабочее напряжение в условиях загрязнения. В справочной литературе, однако, указываются длины LУ, которые не зависят от условий эксплуатации, легко и точно определяются для каждого изолятора. Диапазоны изменения LУ у стандартных аппаратных изоляторов наружной установки приведены ниже, значения LУ для линейных подвесных изоляторов указаны в табл. 4. При отсутствии специальных мер, при рабочем напряжении на изоляторах линий и РУ может возникать коронный разряд, который опасен прежде всего интенсивными радиопомехами. Поэтому в случае необходимости изоляторы или аппараты, в состав которых они входят, снабжаются экранами, имеющими поверхности с достаточно большими радиусами кривизны. Такие экраны выравнивают электрическое поле около изолятора и тем самым резко повышают напряжение появления короны.
Напряжение UК.И. на отдельном подвесном изоляторе тарельчатого типа, при котором на нем возникает корона, зависит от типа изолятора и лежит в пределах 28—50 кВ (табл.4), т.е. достаточно велико. Однако напряжение UК.Г. на гирлянде из п изоляторов, соответствующее появлению короны на одном из изоляторов, может быть значительно меньше nUК.И. и при некоторых условиях оказаться ниже рабочего напряжения. Объясняется это
Таблица 4
тем, что напряжение, приложенное к гирлянде, распределяется по изоляторам неравномерно. Для выяснения причин неравномерного распределения напряжения обратимся к схеме замещения гирлянды, показанной на рис. 19. На этой схеме С — собственная емкость изолятора, составляющая для тарельчатых изоляторов 50—70 пФ; С 1 — емкость изолятора по отношению к земле; С2 — емкость изолятора по отношению к проводу. Значения емкостей С1 и С2 зависят от положения изолятора в гирлянде; в среднем С1= 4—5 пФ, С2 = 0,5—1,0 пФ.
Рис. 19 Схема замещения гирлянды изоляторов.
В реальных условиях, т. е. при С1> С2 0, наибольшее напряжение прикладывается к изолятору, расположенному около провода, наименьшие Для линейных и аппаратных изоляторов всех типов и классов напряжения достаточно полной характеристикой электрической прочности их внешней изоляции при воздействии кратковременных перенапряжений являются значения испытательных напряжений — импульсных и промышленной частоты, прикладываемых при сухом состоянии поверхностей и под дождем. Это, однако, не относится к гирляндам. Тарельчатые изоляторы, из которых составляют гирлянды, испытываются по одному. Значения испытательных напряжений таких изоляторов не могут характеризовать электрическую прочность гирлянд. Объясняется это тем, что пути развития разряда для одиночного изолятора и такого же изолятора в гирлянде различны. Рис. 20. Пути развития разряда по гирлянде изоляторов.
У отдельно испытываемого изолятора разряд идет целиком по его поверхности или частично по воздуху ( вба1, рис.20). В гирлянде из п изоляторов он может развиваться либо по путям вбг, суммарная длина которых равна nlP, либо по пути де. Длина последнего при больших n приблизительно равна длине гирлянды lГ = nH, где Н — строительная высота изолятора. В первом случае средние сухоразрядные напряженности ниже, так как значительная часть пути разряда лежит вдоль поверхности изоляторов. Опыт показывает, что при разряд идет по этому пути, несмотря на то, что nlP>lГ. При разряд развивается по пути де, а сухоразрядные напряженности достигают максимально возможных значений, равных средним разрядным напряженностям воздушного промежутка стержень — стержень. Сухоразрядное напряжение гирлянды, измеренное при частоте 50 Гц, мало зависит от типа изолятора и определяется для гирлянд без арматуры строительной длиной гирлянды, а для гирлянд с арматурой — наименьшим расстоянием между арматурой и траверсой. Мокроразрядные напряжения UМР гирлянд, измеренные при частоте 50 Гц, практически линейно зависят от суммарной длины пути утечки и, следовательно, от числа изоляторов п. Эта зависимость может быть представлена в виде UМР=nHEМР (20) где Емр — средняя мокроразрядная напряженность, зависящая от формы изолятора; для фарфоровых и стеклянных изоляторов она лежит в пределах 200—260 кВ/м (табл.4) Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |