|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Сделать чертежРешение: 1) Если ребро АВ обозначить за вектор
Если Следовательно,
2) Угол между ребрами АВ и АD – это угол между векторами
Из пункта 1) нам известны координаты вектора
Если векторы
Следовательно, получаем
Итак, 3) Уравнение прямой, проходящей через две точки М1(х1; у1; z1) и М2(х2; у2; z2) имеет вид:
или равносильное ему уравнение:
где Направляющий вектор прямой – это вектор, параллельный прямой. В нашем случае прямая проходит через точки А(10; 6; 6) и В(- 2; 8; 2).Следовательно, уравнение прямой АВ:
Итак, каноническое уравнение прямой АВ: где направляющий вектор 4) Уравнение плоскости по трем точкам находится по формуле:
где А(х1; у1; z1); В (х2; у2; z2); С(х3; у3; z3) – точки, через которые проходит плоскость. Подставляя координаты точек А, В, С в формулу (*), получим:
Считаем определитель, разложив его по первой строке. D=а11А11+а12А12+а13А13, где
Итак, уравнение плоскости АВС:
Пример 5. Дана система линейных уравнений: доказать ее совместность и решить тремя способами: 1) Методом Гаусса; 2) По формулам Крамера; Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.) |