АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Относительные уровни издержек на предприятиях

Читайте также:
  1. IV. Относительные величины, динамические ряды
  2. АБСОЛЮТНЫЕ И ОТНОСИТЕЛЬНЫЕ ВЕЛИЧИНЫ
  3. Абсолютные и относительные показатели изменения структуры
  4. Абсолютные и относительные показатели изменения структуры
  5. Абсолютные, относительные и средние показатели в статистике
  6. Анализ издержек обращения
  7. Анализ издержек обращения в торговле
  8. Билет 12. Предмет социальной философии. Уровни анализа общественных отношений
  9. Билет № 1 Понятие мировоззрения, его основные сферы, уровни и типы.
  10. В предприятиях торговли и общественного питания
  11. Виды групп и уровни их развития
  12. Виды и уровни менеджмента предприятия

 

Предприятия            
Издержки 0,4 0,5 0,2 0,8 0,6 0,3

 

Распределение ресурсов по предприятиям сопряжено с необходимостью учета ряда ограничений, которые могут быть описаны системой четырех уравнений с шестью неизвестными, аналогичной системе (16.10):

 

Рис. 16.1. График оптимального распределения ресурсов

 

 

Смысл первого уравнения в нашем примере в том, что ресурс вида 1, общий ресурс которого составляет 16 единиц, может размещаться в количестве четырех единиц на предприятии первого типа и одной единицы – на предприятии четвертого типа. Аналогично раскрывается смысл второго и последующих уравнений. Последнее условие говорит о том, что число предприятий не может быть отрицательным.

Необходимо определить, какое количество предприятий каждого типа следует иметь, чтобы общие издержки были минимальными.

В соответствии с табл. 16.1 целевая функция, подлежащая оптимизации, примет вид:

 

 

Решение

Решение задачи сводится к выполнению ограничений, заданных уравнениями (16.12), с учетом условия минимизации выражения (16.13).

В нашем примере, когда п - т = 2, каждое из ограничительных линейных уравнений (16.12), а также линейная функция (16.13) могут быть представлены геометрически в двухмерном пространстве (на плоскости).

Чтобы представить ограничения и целевую функцию на графике, необходимо выразить все известные через независимые величины. Например, x1 и х2, соответствующие координатным осям, относительно которых будет производиться построение (рис. 16.1).

Из уравнений (16.12) следует:

 

 

Целевая функция примет вид

 

 

Из сопоставления уравнения (16.14) и последнего из ограничений (16.10) xj ³ 0 следует:

 

 

Каждому из неравенств (16.16) на графике рис. 16.1 соответствует полуплоскость, в пределах которой находятся все допускаемые данным неравенством значения переменной величины xj (j = 1, 2,..., 6). Так, неравенству x1 ³ 0 соответствует полуплоскость вправо от оси х2 (граница ее заштрихована). Неравенству x3 = 8 x1 + 12 х2 - 16 ³ 0 соответствует полуплоскость вправо и вверх от линии граничного значения данного неравенства (при х3 = 0). Уравнение этой линии:

 

 

Таким же образом можно построить границы, определяемые другими уравнениями.

Неравенствам (16.16) соответствует некоторая область – шестиугольник ABCDEF, образованный границами упомянутых выше полуплоскостей. Эта область может быть названа областью допустимых планов, поскольку любая точка в ее пределах отвечает требованиям наложенных ограничений (16.12).

Из всех допустимых планов нас интересует оптимальный план, при котором функция цели у достигает минимума.

Целевой функции соответствует семейство параллельных прямых. Рассмотрим одну из них, проходящую через начало координат, что будет иметь место при у = 22,8. При этом x2 = 3x1.

Интересующая нас прямая у = 22,8, как видно на рис. 16.1, имеет наклон вправо от оси х2. Задаваясь различными значениями у, получим семейство прямых линий, параллельных прямой у = 22,8, проходящей через точку 0. При этом чем меньше будет значение у, тем, очевидно, правее будет располагаться соответствующая прямая.

Поскольку мы добиваемся минимального значения у, то нас будет интересовать прямая, расположенная в наибольшем удалении вправо от прямой у = 22,8 и проходящая через многоугольник ABCDEF, – прямая ymin.

Единственной точкой, соответствующей оптимальному плану, будет та вершина многоугольника ABCDEF, которая одновременно принадлежит области допустимых планов и отвечает требованию минимизации целевой функции у, - вершина С. Из уравнения прямой ЕС, проходящей через точку С, следует, что х1 = 4. Из уравнения прямой DC, проходящей через ту же точку, следует, что x2 = 0.

Подставляя полученные значения x1 = 4 и x2 = 0 в уравнения (16.14), определим величины остальных переменных, составляющих оптимальный план:

 

 

Таким образом, оптимальный план будет следующим:

 

Линейная форма (величина издержек) при этом будет минимальной:

 

 

На практике встречается ряд задач, аналогичных рассмотренному примеру, но требующих максимизации целевой функции (например, величины дохода или прибыли).

При решении этих задач целевая функция рассчитывается по формуле, аналогичной (16.11):

 

 

где у* – целевая функция, подлежащая максимизации. Отличие заключается в том, что знаки перед всеми постоянными коэффициентами меняются на обратные

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

 

1. Что такое эффективность менеджмента?

2. Что такое внутренняя и внешняя эффективность?

3. Что такое критерии эффективности (показатели успешности) менеджмента?

4. Какие требования предъявляются к критериям эффективности менеджмента?

5. Что такое правильное и оптимальное решения?

6. В чем смысл выбора критерия эффективности А. Н. Колмогорова?

7. Как определялись признаки образцовых американских компаний?

8. Что означает признак «лицом к потребителю»?

9. Что означает признак «производительность – от человека»?

10. Что означает признак «пристрастие к действию»?

11. Что означает признак «самостоятельность и предприимчивость»?

12. Что означает признак «побуждение через ценности»?

13. Что означает признак «приверженность неповторимому делу»?

14. Что означает признак «простая форма, скромный штат управления»?

15. Что означает признак «свобода действий и жесткость одновременно»?

16. В чем основные достижения японского менеджмента?

17. Что означает принцип «точно вовремя»?

18. Что такое рентабельность и как она рассчитывается?

19. Приведите примеры расчетов коэффициентов эффективности деятельности фирмы.

20. В чем смысл метода линейного программирования (планирования)?

21. Приведите пример расчета оптимального использования ресурсов.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)