|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Упругие волны в газах и жидкостяхМы рассматриваем здесь газ или жидкость (так же как твердое тело в предыдущих параграфах) как сплошную непрерывную среду, отвлекаясь от его атомистической структуры. Под смещением мы здесь понимаем общее смещение вещества, заполняющего объем, заключающий в себе очень много атомов, но малый по сравнению с длиной волны. Будем считать, что рассматриваемый газ или жидкость находятся в очень длинной цилиндрической трубе, образующие которой параллельны оси х, и что смещение зависит только от одной координаты х. Мы можем применить к столбу газа или жидкости, заполняющему трубу, те же рассуждения, что и к стержню. Мы придем, таким образом, к уравнению
где р = - σ есть давление в газе или жидкости. Здесь Уравнение (14) применимо и в случае плоских волн в неограниченной жидкой или газообразной среде (можно мысленно выделить цилиндрический столб, параллельный направлению распространения и применить к нему те же рассуждения, что к столбу, заключенному в трубе). Как известно из термодинамики, р есть функция плотности данной массы газа (или жидкости) и ее температуры. Температура в свою очередь изменяется при сжатии и разрежении. Теплопроводность газов и жидкостей очень мала, поэтому можно считать в первом приближении, что при распространении звука процесс сжатия и разрежения каждой части газа или жидкости происходит адиабатически, т. е. без заметного теплообмена с соседними частями. В термодинамике показывается, что в этом случае (если можно пренебречь внутренним трением и некоторыми другими явлениями) температура является однозначной функцией плотности, и, следовательно, давление также. При заданной деформации ε в твердом теле также зависит от температуры. Но в акустике твердых тел это обстоятельство не играет существенной роли. В газах и в жидкостях за некоторыми исключениями (например вода, при температуре ниже 4° С) температура растет при сжатии и уменьшается при расширении. Есть однозначная функция плотности: p=f(p). (15) Введем обозначения
Где Подставляя первую формулу (19) в (17) и принимая во внимание, что при равновесии давление не зависит от х, т. е.
получаем:
Найдем теперь связь между а) Подставляя (16) в (17), имеем:
разлагая f(
Так как
Здесь мы сделаем существенное предположение: будем считать уплотнения и разрежения настолько малыми, что допустимо пренебречь в разложении (21) членами, пропорциональными
Тем самым мы ограничиваем себя исследованием волн малой интенсивности.
б) Объем
так как здесь поперечный размер (в отличие от твердого стержня) остается, постоянным, а длина
Подставляя (19) и (22), получаем:
Пренебрегая и здесь высшими степенями малой величины
Таким образом,
Мы получаем волновое уравнение
Где Отсюда заключаем, что рассматриваемые малые деформации распространяются в виде плоских не деформирующихся волн; скорость распространения (скорость звука) тем больше, чем сильное в данной среде возрастает давление при адиабатическом возрастании плотности; она равна квадратному корню из производной давления по плотности, взятой при значении последней в отсутствие волны (ρ
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (1.296 сек.) |