АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

До задачі 3

Читайте также:
  1. I. МЕТА І ЗАДАЧІ ВИВЧЕННЯ НАВЧАЛЬНОЇ ДИСЦИПЛІНИ
  2. Вибір задачі для моделювання
  3. Вправи і задачі
  4. Вправи і задачі розрахункового характеру.
  5. Вправи і задачі.
  6. Вправи і задачі.
  7. До задачі 1
  8. До задачі 11
  9. До задачі 2
  10. До задачі 4
  11. До задачі 5

Варіант 0.

Розв’язання. Похідною алгебраїчної суми функцій є алгебраїчна сума похідних, тобто:

Використовуючи правило диференціювання добутку двох функцій та формули знаходимо:

Після скорочення і розкриття дужок остаточно отримуємо:

2.

Розв’язання. За правилом диференціювання маємо:

 

3.

Розв’язання. Для знаходження похідної скористуємось правилом логарифмічного диференціювання.

Спочатку прологарифмуємо функцію за натуральним логарифмом:

Тому що ln y - складна функція, то


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)