|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Распределение часов по темам и видам учебной работы
Форма обучения очная
Форма обучения заочная
Форма обучения очно-заочная
СОДЕРЖАНИЕ КУРСА
Изучение курса эконометрики следует начать с рассмотрения основных аспектов эконометрического моделирования, типов выборочных данных, видов модели, основные этапы и возникающие при этом проблемы моделирования. Студенты должны понять, что не всякая экономико-математическая модель, представляющая математико-статистическое описание экономического объекта, может считаться эконометрической. Она становится эконометрической только в том случае, если будет отражать этот объект на основе фактических статистических данных, характеризующих именно его. Центральное место во всем математико-статистическом инструментарии эконометрики занимает регрессионный анализ, как метод, используемый в эконометрике для получения уравнения, дающего наилучшую оценку истинного соотношения между исследуемыми переменными. При изучении этой темы студентам важно усвоить основные предпосылки и методы оценки классической линейной модели множественной регрессии (КЛММР), а также обобщенной линейной модели множественной регрессии в случае нарушения предпосылок КЛММР – гетероскедактичности и автокоррелированности остатков временного ряда. При построении регрессионных моделей приходится сталкиваться с такой проблемой как наличие функциональной или тесной корреляционной зависимости между объясняющими переменными, т.е. мультиколлинеарности. Это может привести к получению неустойчивых, не имеющих реального смысла оценок. При изучении социально-экономических процессов и явлений может оказаться необходимым включить в модель фактор, имеющий два или более качественных уровней. Это могут быть разного рода качественные признаки, например, образование, пол, профессия, принадлежность к определенному региону. Такого рода переменные в эконометрике принято называть фиктивными переменными. Качественные признаки могут существенно влиять на структуру линейных связей между переменными и приводить к скачкообразному изменению параметров регрессионной модели. В этом случае говорят об исследовании регрессионных моделей с переменной структурой или построении регрессионных моделей по неоднородным данным. При моделировании реальных экономических объектов для объяснения механизма их функционирования бывает недостаточно построить отдельное уравнение регрессии. В этом случае для описания структуры связи между переменными строится система одновременных уравнений, состоящая из тождеств и регрессионных уравнений. Например, для изучения модели спроса как соотношения цен и количества потребления товаров, то одновременно для прогнозирования спроса необходима модель предложения товаров, в которой также рассматривается взаимосвязь между количеством и ценой предлагаемых благ. Это позволяет достичь равновесия между спросом и предложением. Еще один пример. Модель национальной экономики включает в себя систему уравнений: функции потребления, инвестиций заработной платы, и также тождество доходов. Оценивание системы одновременных уравнений требует применения более сложного математико-статистического аппарата.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |