АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Тема 6. Прогнозирование, основанное на использовании моделей временных рядов

Читайте также:
  1. Crown Victoria одна из популярных в США моделей (в полиции, такси, прокате, на вторичном рынке). Производство в Канаде. Дебют модели состоялся в 1978.
  2. Entering Timing Constraints (ввод временных ограничений).
  3. F) Подготовить примечание к балансу, показывающее движение по счёту отложенного налога для каждого вида временных разниц.
  4. II. Общие принципы построения и функционирования современных бизнес-структур
  5. Анализ применения современных технологий в отеле «Onix Торжок»
  6. Аналитические методы сглаживания временных рядов
  7. Аналитическое выравнивание временных рядов
  8. Важное замечание: это работает и на более коротких временных периодах
  9. Ввод повременных данных
  10. Ввод повременных данных задач
  11. Взаємозв’язок моделей
  12. Виды и принципыпостроения современных информационных систем

Характерной чертой адаптивных методов прогнозирования является их способность непрерывно учитывать эволюцию динамических характеристик изучаемых процессов, «адаптироваться» к этой эволюции, придавая тем больший вес, тем более высокую информационную ценность имеющимся наблюдениям, чем ближе они к текущему моменту прогнозирования.

В основе процедуры адаптации лежит метод проб и ошибок. По модели делается прогноз на один интервал по времени. Через один шаг моделирования анализируется результат: насколько он далек от фактического значения. Затем в соответствии с моделью происходит корректировка. После этого процесс повторяется. Таким образом, адаптация осуществляется рекуррентно с получением каждой новой фактической точки ряда.

Методы экспоненциального сглаживания. Модель Брауна.

Пусть анализируемый временной ряд x(t) представлен в виде:

x(t) = a0 + ε(t),

где a0 – неизвестный параметр, не зависящий от времени, ε(t) - случайный остаток со средним значением, равным нулю, и конечной дисперсией.

В соответствии с методом Брауна прогноз x*(t+τ) для неизвестного значения x(t+τ) по известной до момента времени t траектории ряда x(t) строится по формуле:

x*(t; τ) = S(t),

где значение экспоненциально взвешенной скользящей средней S (t) определяется по рекуррентной формуле:

S(t) = αx(t) + (1-α) S(t-1).

Коэффициент сглаживания α можно интерпретировать как коэффициент дисконтирования, характеризующий меру обесценивания информации за единицу времени. Из формулы следует, что экспоненциально взвешенная скользящая средняя является взвешенной суммой всех уровней ряда x(t), причем веса уменьшаются экспоненциально по мере удаления в прошлое.

В качестве S (0) берется, как правило, среднее значение ряда динамики или среднее значение нескольких начальных уровней ряда.

Случай линейного тренда: x(t) = a0 + a1t + ε(t).

В этом случае прогноз x*(t; τ) будущего значения определяется соотношением:

x*(t; τ) = ,

а пересчет коэффициентов осуществляется по формулам:

Начальные значения коэффициентов берутся из оценки тренда линейной функцией.

Модель Хольта.

В модели Хольта введено два параметра сглаживания α 1 и α 2 (0< α 1, α 2 <1). Прогноз x*(t;l) на l шагов по времени определяется формулой:

x*(t; τ) = ,

а пересчет коэффициентов осуществляется по формулам:

Модель Хольта-Уинтерса.

Эта модель помимо линейного тренда учитывает и сезонную составляющую. Прогноз x*(t;τ) на τ шагов по времени определяется формулой:

x*(t;τ) = ,

где f(t) – коэффициент сезонности, а T – число временных тактов (фаз), содержащихся в полном сезонном цикле.

Видно, что в данной модели сезонность представлена мультипликативно. Формулы обновления коэффициентов имеют вид:

Модель Тейла-Вейджа.

Если исследуемый временной ряд имеет экспоненциальную тенденцию с мульти-пликативной сезонностью, то после логарифмирования обеих частей уравнения получается модель с линейной тенденцией и аддитивной сезонностью или модель Тейла-Вейджа.

Имеется модель:

x(t) = a0(t) + g(t) + δ(t),

a0(t) = a0(t-1) + a1(t).

Здесь a0(t) – уровень процесса после устранения сезонных колебаний, a1(t) – аддитивный коэффициент роста, ω(t) – аддитивный коэффициент сезонности и δ(t) – белый шум.

Прогноз x*(t;τ) на τ шагов по времени определяется формулой:

x*(t;τ) = .

Коэффициенты вычисляются рекуррентным способом по формулам:

Для определения оптимальных значений параметров адаптации перебирают различные наборы их значений и сравнивают получающиеся при этом среднеквадратические ошибки прогнозов.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)