|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Передача электроэнергииПередача электроэнергии от электростанции к потребителям — одна из важнейших задач энергетики. Электроэнергия передаётся преимущественно по воздушным линиям электропередачи (ЛЭП) переменного тока, хотя наблюдается тенденция ко всё более широкому применению кабельных линий и линий постоянного тока. Необходимость П. э. на расстояние обусловлена тем, что электроэнергия вырабатывается крупными электростанциями с мощными агрегатами, а потребляется сравнительно маломощными электроприёмниками, распределёнными на значительной территории.. От эффективности П. э. на расстояние зависит работа единых электроэнергетических систем, охватывающих обширные территории. Одной из основных характеристик электропередачи является её пропускная способность, то есть та наибольшая мощность, которую можно передать по ЛЭП с учётом ограничивающих факторов: предельной мощности по условиям устойчивости, потерь на корону, нагрева проводников и т.д. Мощность, передаваемая по ЛЭП переменного тока, связана с её протяжённостью и напряжениями зависимостью , где U1 и U2 — напряжения в начале и в конце ЛЭП, Zc — волновое сопротивление ЛЭП, a — коэффициент изменения фазы, характеризующий поворот вектора напряжения вдоль линии на единицу её длины (обусловленный волновым характером распространения электромагнитного поля), l — протяжённость ЛЭП, d — угол между векторами напряжения в начале и в конце линии, характеризующий режим электропередачи и её устойчивость. Предельная передаваемая мощность достигается при d = 90°, когда sin d = 1. Для воздушных ЛЭП переменного тока можно приближённо считать, что максимальная передаваемая мощность примерно пропорциональна квадрату напряжения, а стоимость сооружения ЛЭП пропорциональна напряжению. Поэтому в развитии электропередач наблюдается тенденция к увеличению напряжения как к главному средству повышения пропускной способности ЛЭП. В электропередачах постоянного тока отсутствуют многие факторы, свойственные электропередачам переменного тока и ограничивающие их пропускную способность. Предельная мощность, передаваемая по ЛЭП постоянного тока, имеет большие значения, чем у аналогичных ЛЭП переменного тока: , где Ев — напряжение на выходе выпрямителя, Rå— суммарное активное сопротивление электропередачи, в которое, кроме сопротивления проводов ЛЭП, входят сопротивления выпрямителя и инвертора. Ограниченность применения электропередач постоянного тока связана главным образом с техническими трудностями создания эффективных недорогих устройств для преобразования переменного тока в постоянный (в начале линии) и постоянного тока в переменный (в конце линии). Электропередачи постоянного тока перспективны для объединения крупных удалённых друг от друга энергосистем. В этом случае отпадает необходимость в обеспечении устойчивости работы этих систем. Качество электроэнергии определяется надёжной и устойчивой работой электропередачи, что обеспечивается, в частности, применением компенсирующих устройств и систем автоматического регулирования и управления (см. Автоматическое регулирование возбуждения, Автоматическое регулирование напряжения, Автоматическое регулирование частоты). В результате проведения научно-исследовательской работы были разработаны: · схемы электропередачи постоянного тока, позволяющие наиболее рационально использовать особенности конструкции воздушных линий трехфазного переменного тока, предназначенные для передачи электрической энергии по трем проводам; · методика расчета рабочего напряжения постоянного тока для воздушных линий электропередач, сооруженных на основе типовых конструкций опор трехфазного переменного тока классов напряжений 500-750кВ; · методика расчета пропускной способности воздушных линий трехфазного переменного тока с рабочим напряжением 500-750кВ после их перевода на постоянный ток по предложенным автором схемам; · методика расчета надежности воздушных линий трехфазного переменного тока с рабочим напряжением 500-750кВ после их перевода на постоянный ток по предложенным автором схемам. Выполнен расчет критической длины линии, начиная с которой электропередача постоянного тока по разработанным автором схемам будет экономически более выгодной, чем электропередача переменного тока с напряжением 500, 750кВ. На основе результатов научного исследования сформулированы рекомендации: · по выбору типа подвесных тарельчатых изоляторов, входящих в состав изолирующих подвесок воздушных линий электропередач постоянного тока; · по расчету длины пути утечки изолирующих подвесок воздушных линий электропередач постоянного тока; · по выбору трехпроводной схемы электропередачи, применительно к воздушным линиям постоянного тока, выполненных на основе унифицированных конструкций опор трехфазного переменного тока; · по применению унифицированных конструкций опор трехфазного переменного тока на воздушных линиях постоянного тока; · по определению рабочего напряжения постоянного тока, применительно к воздушным линиям электропередач постоянного тока, выполненных на основе унифицированных конструкций опор трехфазного переменного тока; · по расчету пропускной способности трехпроводной линии электропередачи постоянного тока. Результаты выполненных расчетов показывают, что пропускную способность существующих ЛЭП трехфазного переменного тока можно существенно повысить путем их перевода на постоянный электрический ток с использованием тех же самых опор, гирлянд изоляторов и проводов. Увеличение передаваемой мощности в этом случае может составить от 50% до 245% для ВЛ 500кВ и от 70% до 410% для ВЛ 750кВ, в зависимости от марки и сечения применяемых проводов и величины установленной пропускной способности ВЛ на переменном токе. Перевод существующих линий трехфазного переменного тока на постоянный ток по предложенным схемам позволит, также, существенно улучшить их показатели надежности. При этом, использование разработанных схем позволит повысить надежность в 5-30 раз, в зависимости от класса напряжения ВЛ. В случае нового проектирования ВЛ постоянного тока по вышеназванным схемам, их показатели надежности будут эквивалентными. В целом, возможность перевода существующих ВЛ трехфазного переменного тока является вполне осуществимой. Такое техническое решение может быть актуальным для повышения пропускной способности находящихся в эксплуатации ВЛ при сохранении их конфигурации, а так же позволит расширить сферу применения электропередач постоянного тока. Не исключается возможность сооружения новых линий электропередач постоянного тока с применением унифицированных конструкций опор трехфазного переменного тока 4Реактивная мощность – составляющая полной мощности, которая в зависимости от параметров, схемы и режима работы электрической сети вызывает дополнительные потери активной электрической энергии и ухудшение показателей качества электрической энергии. Реактивная электрическая энергия – вызванная электромагнитной несбалансированностью электроустановок технологически вредная циркуляция электрической энергии между источниками электроснабжения и приемниками переменного электрического тока. Основными потребителями реактивной мощности в электрических системах являются трансформаторы, воздушные электрические линии, асинхронные двигатели, вентильные преобразователи, индукционные электропечи, сварочные агрегаты и другие нагрузки. Реактивная мощность может генерироваться не только генераторами, но и компенсирующими устройствами-конденсаторами, синхронными компенсаторами или статистическими источниками реактивной мощности (ИРМ), которые можно установить на подстанциях электрической сети. Для нормализации потоков реактивной мощности, при решении задач компенсации реактивной мощности собственными силами и усилиями потребителей для продвижения процесса решения проблем реактивной мощности и задач по оптимизации ее потоков, нормализации уровней напряжения, снижения потерь активной мощности в распределительных электрических сетях и повышения надежности электроснабжения потребителей должно быть произведено обследование объектов филиала ОАО «МРСК Северного Кавказа» – «Ставропольэнерго» на предмет состояния источников реактивной мощности, состояния средств учета реактивной энергии и мощности для функции контроля баланса реактивной энергии и мощности. В «Ставропольэнерго» 866 банок компенсирующих устройств (БСК) располагаемой мощностью 38,66 МВар (фактическая загрузка в максимум по реактивной мощности - 25,4 МВар). На балансе потребителей установленная мощность 25,746 МВар (фактическая загрузка в максимум по реактивной мощности - 18,98 МВар) Совместно с ОАО «Ставропольэнергосбыт» проведены обследования характера нагрузки потребителей с повышенным потреблением реактивной мощности (tg? > 0,4). После издания «Порядка расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств потребителей электрической энергии», в соответствии с Постановлением Правительства РФ № 530, работа с потребителями будет организована в полном объеме. Условия работы с потребителями в соответствии с новым «Порядком…» включены в текст перезаключаемых в настоящее время договоров электроснабжения. При обращении потребителей об осуществлении присоединения к электрическим сетям «Ставропольэнерго» или об увеличении присоединенной мощности 150 кВт и выше, осуществляется внесение в договора на присоединение потребителей к электрической сети требований по необходимости компенсации реактивной мощности, в размере, обеспечивающем соблюдение устанавливаемых предельных значений коэффициентов реактивной мощности. Организовано подписание дополнительных соглашений к договорам на оказания услуг по передаче электрической энергии с ОАО «Ставропольэнергосбыт», ОАО «Пятигорские электрические сети», ООО «РН-энерго», КТ ЗАО «РЦЭР и К», ОАО «Невинномысский Азот», гарантирующими поставщиками условий по поддержанию Потребителями с присоединенной мощностью 150 кВт и более коэффициентов реактивной мощности, устанавливаемых федеральным органом исполнительной власти, осуществляющим функции по выработке государственной политики в сфере топливно-энергетического комплекса и требований по обеспечению учета реактивной энергии. В ближайшие годы ожидается ввод новых промышленных мощностей, что определит рост потребления до 3 и более % в год. Это выдвигает задачу по балансу реактивной мощности в одно из приоритетных направлений, которому будет уделяться повышенное внимание. Компенса́ция реакти́вной мо́щности — целенаправленное воздействие на баланс реактивной мощности в узле электроэнергетической системы с целью регулирования напряжения, а в распределительных сетях и с целью снижения потерь электроэнергии[1]. Осуществляется с использованием компенсирующих устройств. Для поддержания требуемых уровней напряжения в узлах электрической сети потребление реактивной мощности должно обеспечиваться требуемой генерируемой мощностью с учетом необходимого резерва. Генерируемая реактивная мощность складывается из реактивной мощности, вырабатываемой генераторами электростанций и реактивной мощности компенсирующих устройств, размещенных в электрической сети и в электроустановках потребителей электрической энергии. Компенсация реактивной мощности особенно актуальна для промышленных предприятий, основными электроприёмниками которых являются асинхронные двигатели, в результате чего коэффициент мощности без принятия мер по компенсации составляет 0,7— 0,75. Мероприятия по компенсации реактивной мощности на предприятии позволяют: · уменьшить нагрузку на трансформаторы, увеличить срок их службы, · уменьшить нагрузку на провода, кабели, использовать их меньшего сечения, · улучшить качество электроэнергии у электроприемников (за счёт уменьшения искажения формы напряжения), · уменьшить нагрузку на коммутационную аппаратуру за счет снижения токов в цепях, · избежать штрафов за снижение качества электроэнергии пониженным коэффициентом мощности, · снизить расходы на электроэнергию. · Потребителями реактивной мощности, необходимой для создания магнитных полей, являются как отдельные звенья электропередачи (трансформаторы, линии, реакторы), так и такие электроприёмники, преобразующие электроэнергию в другой вид энергии, которые по принципу своего действия используют магнитное поле (асинхронные двигатели, индукционные печи и т.п.). До 80-85% всей реактивной мощности, связанной с образованием магнитных полей, потребляют асинхронные двигатели и трансформаторы. Относительно небольшая часть в общем балансе реактивной мощности приходится на долю прочих её потребителей, например на индукционные печи, сварочные трансформаторы, преобразовательные установки, люминисцентное освещение и т.п. · Полная мощность, выдаваемая генераторами в сеть [1, с.140]: · (1) · где P и Q — активная и реактивная мощности приемников с учетом потери мощности в сетях; · cosφ — результирующий коэффициент мощности приемников электроэнергии. · Генераторы рассчитываются для работы с их номинальным коэффициентом мощности, равным 0,8—0,85, при котором они способны выдавать номинальную активную мощность [2, с.180]. Снижение cosφ у потребителей ниже определенного значения может привести к тому, что cosφ генераторов окажется ниже номинального и выдаваемая ими активная мощность при той же полной мощности будет меньше номинальной. Таким образом, при низких коэффициентах мощности у потребителей для обеспечения передачи им заданной активной мощности приходится вкладывать дополнительные затраты в сооружение более мощных электростанций, увеличивать пропускную мощность сетей и трансформаторов и вследствие этого нести дополнительные эксплуатационные расходы. · Так как в современные электрические системы входит большое количество трансформаторов и протяженных воздушных линий, то реактивное сопротивление передающего устройства получается весьма значительным, а это вызывает немалые потери напряжения и реактивной мощности. Передача реактивной мощности по сети приводит к дополнительным потерям напряжения, из выражения [3, с. 168]: · (2) · видно, что передаваемая по сети реактивная мощность Q и реактивное сопротивление сети Х существенно влияют на уровень напряжения у потребителей. · Размер передаваемой реактивной мощности влияет также на потери активной мощности и энергии в электропередаче, что следует из формулы: · (3) · Величиной, характеризующей передаваемую реактивную мощность, является коэффициент мощности . Подставляя в формулу потерь значение полной мощности, выраженной через cosφ, получаем: · (4) · Отсюда видно, что зависимость мощности конденсаторных батарей обратно пропорциональна квадрату напряжения сети, поэтому невозможно плавно регулировать реактивную мощность, а следовательно, и напряжение установки. Таким образом, сos (φ) уменьшается, когда потребление реактивной мощности нагрузкой увеличивается. Необходимо стремиться к повышению сos (φ), т.к. низкий сos (φ) несет следующие проблемы: · Похожая статья: Компенсация возмущений и помех при управлении линейным объектом по выходу · - высокие потери мощности в электрических линиях (протекание тока реактивной мощности); · - большие перепады напряжения в электрических линиях; · - необходимость увеличения габаритной мощности генераторов, сечения кабелей, мощности силовых трансформаторов. · Из всего выше приведенного, понятно, что компенсация реактивной мощности необходима. Что легко можно достичь применением активных компенсирующих установок. Основными источниками реактивной мощности, устанавливаемыми на месте потребления, являются синхронные компенсаторы и статические конденсаторы. Наиболее широко используют статические конденсаторы на напряжении до 1000 В и 6—10 кВ. Синхронные конденсаторы устанавливаются на напряжении 6—10 кВ районных подстанций. · · Рис.1 Схемы электропередачи · а—без компенсации; б — с компенсацией. · Все эти устройства являются потребителями опережающей (емкостной) реактивной мощности или, что то же самое, — источниками отстающей реактивной мощности, выдаваемой ими в сеть. Сказанное иллюстрируется схемой на рис. 1. Так, на схеме рис. 1 а изо-бражена передача электроэнергии от электростанции А к потребительской подстанции Б. Передаваемая мощность составляет P + jQ. При установке у потребителя статических кон-денсаторов мощностью QК (рис. 1 б) мощность, передаваемая по сети, будет Р + j(Q — QК) · Мы видим, что реактивная мощность, передаваемая от электростанции, уменьшилась или, как говорят, стала скомпенсированной на величину мощности, вырабатываемой конденсаторной батареей. Эту мощность потребитель получает теперь в значительной части непосредственно от компенсирующей установки. При компенсации реактивной мощности уменьшаются и потери напряжения в электропередачах. Если до компенсации мы имели потерю напряжения в районной сети · (5) · то при наличии компенсации она будет снижена до величины · (6) · где R и Х — сопротивления сети. · Так как мощность отдельных конденсаторов сравнительно невелика, то обычно их соединяют параллельно в батареи, размещаемые в комплектных шкафах. Часто применяют установки, состоящие из нескольких групп или секций батарей конденсаторов, что делает возможным ступенчатое регулирование мощности конденсаторов, а стало быть, и напряжения установки. · Батарея конденсаторов должна быть снабжена разрядным сопротивлением, наглухо присоединенным к ее зажимам. Разрядным сопротивлением для конденсаторных установок напряжением 6—10 кВ служат трансформаторы напряжения ТН, а для конденсаторных батарей напряжением до 380 В — лампы накаливания. Необходимость в разрядных сопротивлениях диктуется тем, что при отключении конденсаторов от сети в них остается электрический заряд и сохраняется напряжение, близкое по величине к напряжению сети. Будучи же замкнутыми (после отключения) на разрядное сопротивление, конденсаторы быстро теряют свой электрический заряд, спадает до нуля и напряжение, что обеспечивает безопасность обслуживания установки. От других компенсирующих устройств конденсаторные установки выгодно отличаются простотой устройства и обслуживания, отсутствием вращающихся частей и малыми потерями активной мощности. · · Рис 2 Схема включения конденсаторной батареи. · При выборе мощности компенсирующих устройств надо стремиться к правильному распределению источников реактивной мощности и к наиболее экономичной загрузке сетей. Различают: · а) мгновенный коэффициент мощности, подсчитываемый по формуле. · (7) · исходя из одновременных показаний ваттметра (Р), вольтметра (U} и амперметра (I) для данного момента времени или из показаний фазометра, · б) средний коэффициент мощности, представляющий собой среднее арифметическое значение мгновенных коэффициентов мощности за равные промежутки времени, определяемый по формуле: · (8) · где n — число промежутков времени; · в) средневзвешенный коэффициент мощности, определяемый по показаниям счетчиков активной Wa и реактивной Wr энергии за определенный промежуток времени (сутки, месяц, год) с помощью формулы: · (9) · Выбор типа, мощности, места установки и режима работы компенсирующих устройств должен обеспечивать наибольшую экономичность при соблюдении: · а) допустимых режимов напряжения в питающей и распределительных сетях; · б) допустимых токовых нагрузок во всех элементах сети; · в) режимов работы источников реактивной мощности в допустимых пределах; · г) необходимого резерва реактивной мощности. · Критерием экономичности является минимум приведенных затрат, при определении которых следует учитывать: · а) затраты на установку компенсирующих устройств и дополнительного оборудования к ним; · б) снижение стоимости оборудования трансформаторных подстанций и сооружения распределительной и питающей сети, а также потерь электроэнергии в них и · в) снижение установленной мощности электростанций, обусловленное уменьшением потерь активной мощности. · Из всего вышесказанного, можно сделать вывод, что компенсация реактивной мощности в районных сетях с помощью конденсаторных батарей позволит увеличить пропускную способность линии, без изменения электротехнического оборудования. Кроме того, это целесообразно с экономической точки зрения. 5 Строго говоря, методы выбора сечений по допустимой потере напряжения, разработаны для проводников, выполненнных из цветного металла в сети нап-ряжением до 35 кВ включительно. Методы разработаны исходя из допущений принятых в сетях такого напряжения. В основу методов определения сечения по допустимой потере напряжения положено то обстоятельство, что величина реактивного сопротивления проводни-ков x 0 практически не зависит от сечения провода F: · для воздушных ЛЭП x 0 = 0,36 - 0,46 Ом/км; · для кабельных ЛЭП напряжением 6 – 10 кВ x 0 = 0,06 - 0,09 Ом/км; · для кабельных ЛЭП напряжением 35 кВ x 0 = 0,11 - 0,13 Ом/км. Величина допустимой потери напряжения в ЛЭП рассчитывается по мощностям и сопротивлениям участков по формуле: и складывается из двух составляющих – потери напряжения в активных сопротивлениях и потери напряжения в реактивных сопротивлениях . Учитывая обстоятельство, что x 0 практически не зависит от сечения провода, величину можно вычислить до расчета сечения проводника, задавшись средним значением реактивного сопротивления x 0ср в указанных диапазонах его изменения: По заданной величине допустимой напряжения в ЛЭП рассчитывают долю потери напряжения в активных сопротивлениях: . В выражении для расчета потери напряжения в активных сопротивлениях от сечения зависит параметр , где удельная проводимость материала провода. Если ЛЭП состоит только из одного участка, то величину сечения можно определить из выражения для : При большем количестве участков ЛЭП, для расчета сечений проводников нужны дополнительные условия. Их три: · постоянство сечений на всех участках F=const; · минимальный расход проводникового материала min; · минимальные потери активной мощности min. Главное меню · Главная · Электрические системы и сети · Силовые трансформаторы · Шпоры по воздушным, кабельным линиям и подстанциям · Ответы на экзаменационные вопросы · Общеобразовательные материалы
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.016 сек.) |