АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Линии постоянного тока

Читайте также:
  1. Bollinger Bands (BB, линии Боллинджера)
  2. V1: Методы анализа электрических цепей постоянного тока
  3. Амперметр постоянного тока
  4. Бюджетное ограничение и его уравнение. Наклон бюджетной линии, факторы её сдвига.
  5. Бюджетные линии (линии бюджетного ограничения)
  6. В АЛСН числового и частотного кода при электротяге постоянного тока схемы кодирования рельсовой цени в маршрутах отправления путей 2П. и 411 кодовключающее реле
  7. Во время первого кормления у новорожденного ребенка отметили вытекание молока из носа. При обследовании обнаружили расположенную по срединной линии щель твердого неба.
  8. Вольтметр постоянного тока
  9. Вопрос 69. Право постоянного (бессрочного) пользования.
  10. Вскрывая линии разрыва
  11. ВЫБОР ЛИНИИ ДВИЖЕНИЯ В КОНКРЕТНОМ ПРЕПЯТСТВИИ
  12. Выбор сечение проводников по допустимой потере напряжения по условиям постоянства сечения вдоль линии

Высоковольтная линия электропередачи постоянного тока (HVDC) использует для передачи электроэнергии постоянный ток, в отличие от более распространенных линий электропередач (ЛЭП) переменного тока. Высоковольтные ЛЭП постоянного тока могут оказаться более экономичными при передаче больших объёмов электроэнергии на большие расстояния. Использование постоянного тока для подводных ЛЭП позволяет избежать потерь реактивной мощности, из-за большой ёмкости кабеля неизбежно возникающих при использовании переменного тока. В определённых ситуациях ЛЭП постоянного тока могут оказаться полезными даже на коротких расстояниях, несмотря на высокую стоимость оборудования. ЛЭП постоянного тока позволяет транспортировать электроэнергию между несинхронизированными энергосистемами переменного тока, а также помогает увеличить надёжность работы, предотвращая каскадные сбои из-за рассинхронизации фазы между отдельными частями крупной энергосистемы. ЛЭП постоянного тока также позволяет передавать электроэнергию между энергосистемами переменного тока, работающими на разной частоте, например, 50 Гц и 60 Гц. Такой способ передачи повышает стабильность работы энергосистем, так как, в случае необходимости, они могут использовать резервы энергии из несовместимых с ними энергосистем. Современный способ передачи HVDC использует технологию, разработанную в 30-х годах XX века шведской компанией ASEA. Одни из первых систем HVDC были введены в строй в Советском Союзе в 1950 году между Москвой и городом Кашира (была использована немецкая трофейная техника Проект «Эльба»), и островомГотланд и Швецией в 1954 году, с мощностью системы 10-20 МВт. Самая длинная HVDC линия в мире в настоящее время находится в Бразилии и служит для передачи электроэнергии, вырабатываемой двумя ГЭС Если линия электропередачи имеет небольшую длину, при которой можно пренебречь утечкой тока через изоляцию, то ее электрическую схему можно представить в виде последовательного соединения сопротивления линии RЛ, равного суммарному сопротивлению прямого и обратного проводов, и сопротивления нагрузки RН (рис. 1.23).

При анализе работы линии нас интересуют, главным образом, три вопроса: напряжение на нагрузке, величина передаваемой мощности и коэффициент полезного действия передачи. Режимы работы линии удобно рассматривать в виде зависимостей различных величин от тока в линии, равного:

I=U1/(R0+RH)

Падение напряжения в линии ΔU и напряжение на нагрузке U2 определяются следующими выражениями:

Если U1 и RЛ постоянны, то оба выражения представляют собой линейные функции тока (рис. 1.24). В режиме холостого хода (при I = 0) ΔU = 0, а U2 = U1. С ростом тока падение напряжения в линии возрастает, а напряжение на нагрузке уменьшается, и в режиме короткого замыкания (при RН= 0)

Мощность на входе линии линейно зависит от тока: P1 = U1*I. При холостом ходе она равна нулю, а при коротком замыкании вычисляется по формуле

Потери мощности в линии ΔP=I2Rл представляют собой квадратичную функцию тока. Ее график – парабола, проходящая через начало координат.

Мощность, поступающая в нагрузку, равна разности мощности в начале линии и мощности, теряемой в проводах:

Последнее выражение представляет собой уравнение параболы со смещенной вершиной и с обращенными вниз ветвями, проходящими через точки I = 0 и I = IK.

Мощность нагрузки представляет собой довольно сложную зависимость от сопротивления RН:

При RН =0: Р2 = 0; при возрастании RН мощность Р2 сначала возрастает, достигает максимального значения и начинает убывать, стремясь к нулю при RН→∞ (рис. 1.25).

Выясним, при каком сопротивлении нагрузки передаваемая ей мощность максимальна. Для этого продифференцируем функцию (1.15) по RН и приравняем ее к нулю:

То есть мощность, получаемая нагрузкой, максимальна, когда сопротивление нагрузки равно сопротивлению линии.

Ток, протекающий при этом по линии составляет половину тока короткого замыкания, а мощность в конце линии равна:

Коэффициент полезного действия равен отношению мощностей в начале и конце линии:

Из данной формулы следует, что коэффициент полезного действия передачи определяется отношением сопротивлений линии и нагрузки.

При их равенстве, когда нагрузке передается максимальная мощность, η = 0,5 = 50 %. Этот режим, при котором теряется половина передаваемой энергии, на практике, естественно, не пригоден. В реальных линиях при передаче больших мощностей КПД составляет примерно 0,94–0,97. При этом сопротивление нагрузки значительно больше сопротивления линии.

Для анализа режимов электропередачи полезной оказывается еще одна формула. Так как

То есть при одной и той же мощности нагрузки Р2, потери ΔР пропорциональны сопротивлению линии и обратно пропорциональны квадрату напряжения. Для увеличения коэффициента полезного действия передачи необходимо повышение напряжения и снижение электрического сопротивления проводов линии путем увеличения их сечения и применения материалов с меньшим удельным сопротивлением.

Пример 1.6. Линия электропередачи с проводами марки А-120 длиной l = 1000 км питает нагрузку мощностью Р2 = 50 МВт. Каким должно быть напряжение в начале линии, чтобы КПД передачи был не ниже 90 %?

Р е ш е н и е. Сопротивление одного километра провода марки А-120 R0 = 0,27 Ом/км. Суммарное сопротивление прямого и обратного проводов линии составляет RЛ = 2lR0 = 540 Ом.

Принимая η = 0,9, из формулы (1.17) получаем:

Для выполнения условий задачи напряжение в начале линии должно быть не ниже 548 кВ.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)