АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Обратимся к классической теории принципа действия открытого колебательного контура

Читайте также:
  1. Cхема электрическая принципиальная блока ТУ-16. Назначение, принцип действия.
  2. II. ИСТОРИЯ КВАНТОВОЙ ТЕОРИИ
  3. III. КОПЕНГАГЕНСКАЯ ИНТЕРПРЕТАЦИЯ КВАНТОВОЙ ТЕОРИИ
  4. VI. Література періоду принципату
  5. VI. СООТНОШЕНИЕ КВАНТОВОЙ ТЕОРИИ И ДРУГИХ ОБЛАСТЕЙ СОВРЕМЕННОГО
  6. А теперь обратимся к цифрам.
  7. А) Первые действия Ивана IV
  8. Автоматические действия
  9. Автор диспозиционной теории саморегуляции социального поведения
  10. Автором «тектологии»: теории организации является
  11. Аксиоматика теории вероятностей
  12. Алгоритм действия по диагностике, тактике лечения и ведения больных с нарушениями сердечного ритма

Как известно колебательный контур состоит из катушки индуктивности и конденсатора. Исследуем простейший колебательный контур, катушка которого состоит из одного витка, а конденсатор представляет собой две рядом расположенные металлические пластины. Подадим в разрыв индуктивности контура 1 переменное напряжение от генератора, см. рис.2а. В витке потечет переменный ток и создаст вокруг проводника магнитное поле. Это сможет подтвердить магнитный индикатор в виде витка, нагруженного лампочкой. Для того, что бы получить открытый колебательный контур, раздвинем пластины конденсатора. Мы наблюдаем, что лампа индикатора магнитного поля продолжает гореть. Чтобы лучше понять, что происходит в данном опыте, смотри рис. 2а. По витку контура 1 течёт ток проводимости, который вокруг себя создает магнитное поле Н, а между пластинами конденсатора — равный ему так называемый ток смещения. Несмотря на то, что между пластинами конденсатора нет тока проводимости, опыт показывает, что ток смещения создаёт такое же магнитное поле, как и ток проводимости. Первым, кто об этом догадался, был великий английский физик Дж. К. Максвелл.

В 60-х годах 18-го столетия, формулируя систему уравнений для описания электромагнитных явлений, Дж. К. Максвелл столкнулся с тем, что уравнение для магнитного поля постоянного тока и уравнение сохранения электрических зарядов переменных полей (уравнение непрерывности) несовместимы. Чтобы устранить противоречие, Максвелл, не имея на то никаких экспериментальных данных, постулировал, что магнитное поле порождается не только движением зарядов, но и изменением электрического поля, подобно тому, как электрическое поле порождается не только зарядами, но и изменением магнитного поля. Величину, где электрическая индукция, которую он добавил к плотности тока проводимости, Максвелл назвал током смещения. У электромагнитной индукции появился магнитоэлектрический аналог, а уравнения поля обрели замечательную симметрию. Так, умозрительно был открыт один из фундаментальнейших законов природы, следствием которого является существование электромагнитных волн.

Раз так, убедимся еще раз, что происходит, когда закрытый колебательный контур превращается в открытый и как можно обнаружить электрическое Е-поле? Для этого рядом с колебательным контуром поместим индикатор электрического поля, это вибратор, в разрыв которого включена лампа накаливания, она пока не горит. Постепенно раскрываем контур, и мы наблюдаем, что лампа индикатора электрического поля загорается, рис. 2б. Электрическое поле теперь не сосредоточено между пластинами конденсатора, его силовые линии идут от одной пластины к другой через открытое пространство. Таким образом, мы имеем экспериментальное подтверждение утверждения Дж. К. Максвелла, что емкостной излучатель порождает электромагнитную волну. Никола Тесла обратил на этот факт внимание, что при помощи совсем не больших излучателей можно создать достаточно эффективный прибор для излучения электромагнитной волны. Так родился резонансный трансформатор Н. Тесла. Проверим и этот факт, для чего вновь рассмотрим назначение деталей трансформатора.

И так, геометрические размеры сферы и технические данные катушки индуктивности определяют частоту последовательного резонанса, которая должна совпадать с частотой генерации разрядника.

Только режим последовательного резонанса позволяет трансформатору Тесла достигать таких величин напряжений, что на поверхности сферы появляется коронарный разряд и даже молнии.

Рассмотрим работу трансформатора Тесла, как последовательного колебательного контура:

Этот контур необходимо рассматривать как обычный LC–элемент, рис. 1а.б, а так же рис. 2а, где включены последовательно индуктивность L, открытый конденсатор С и сопротивление среды Rср. Угол сдвига фаз в последовательном колебательном контуре между напряжением и током равен нулю (?=0), если ХL = -Хс, т.е. изменения тока и напряжения в нем происходят синфазно. Это явление называется резонансом напряжений (последовательным резонансом). Следует отметить, что при понижении частоты от резонанса, ток в контуре уменьшается, а резонанс тока несет емкостной характер. При дальнейшей расстройке контура и понижении тока на 0,707, его фаза смещается на 45 градусов. При расстройке контура вверх по частоте, он приобретает индуктивный характер. Это явление часто используют в фазоинверторах.

Рассмотрим схему последовательного колебательного контура изображенную на рис. 3, где добротности контура Q может находиться в пределах 20-50 и много выше.

Здесь полоса пропускания определяется добротностью контура:

?f=fo/Q

Тогда напряжение на пластинах излучателя будет выглядеть согласно следующей формуле:

U2 = Q * U1

Напряжение U2 согласно расчетам составляет 2600В, что подтверждается практической работой трансформатора Тесла. В таблице 1 расчетные данные приведены для частоты 7.0 МГц не случайно, это дает возможность любому желающему коротковолновику провести радиолюбительский эксперимент в эфире. Здесь входное напряжение U1 условно взято за 100 Вольт, а добротность за 26.

Таблица 1

f (МГц) L (мкГн) ХL (Ом) C (пФ) −Xc (Ом) ?f (кГц) Q U1/U2 (В)
  30,4           100/2600

Данное утверждение приемлемо в тех случаях, когда отсутствует изменение частоты или сопротивления нагрузки данного контура. В трансформаторе Н. Тесла оба фактора постоянны по определению.

Полоса пропускания трансформатора Тесла зависит от нагрузки, т.е., чем выше связь открытого конденсатора С (сфера-земля) со средой, тем больше нагружен контур, тем шире его полоса пропускания. Это связано с увеличением тока смещения. Тоже происходит с колебательным контуром, нагруженным активной нагрузкой. Таким образом, размеры сферы трансформатора определяет его емкость С и соответственно диктует не только ширину полосы пропускания, но и сопротивление излучения, которое в идеале должно равняться сопротивлению среды. Здесь нужно понимать, что чрезмерное увеличение полосы пропускания за счет увеличения объема излучателей приведет к снижению добротности и соответственно приведет к уменьшению эффективности резонансного трансформатора в целом.

Рассмотрим емкостной элемент трансформатора Тесла, как двухполюсный элемент связи со средой:

Вполне справедливо называть емкостной трансформатор Тесла, диполем Тесла, ведь «диполь» означает di(s) дважды + polos полюс, что исключительно применимо к двухполюсным конструкциям, каковым и является резонансный трансформатор Николы Тесла с емкостной двухполюсной нагрузкой (сфера+земля).

В рассматриваемом диполе, емкость излучателя является единственным элементом связи со средой. Излучатель антенны, это два электрода внедренные в среду, см. Рис. 4. и при появлении на них потенциала напряжения, оно автоматически прикладывается к среде, вызывая в ней некий потенциал –Q и +Q. Если это напряжение переменно, то и потенциалы меняют свой знак на противоположный с той же частотой, а в среде появляется ток смещения. Так как прикладываемые напряжение и ток синфазны по определению последовательного колебательного контура, то и электромагнитное поле в среде претерпевает те же изменения.

Вспомним, что в диполе Герца, где напряжение сначала прикладывается к длинному проводнику, то для волны в ближней зоне характерно, что Е=1, а Н?1. Это связано с тем, что в этом проводнике существуют реактивные LC элементы, которые вызывают задержку фазы поля Н, т.к. полотно антенны соизмеримо с?.

В диполе Тесла, где ХL = −Хс (реактивной составляющей нет), излучающий элемент длиной до 0,05? не резонансен и представляет лишь емкостную нагрузку. При толстом и коротком излучателе, его индуктивность практически отсутствует, она компенсируется сосредоточенной индуктивностью. Здесь напряжение прикладывается сразу к среде, где одновременно возникают поле Е и поле Н. Для волны диполя Тесла характерно, что Е=Н=1, т.е. волна в среде сформирована изначально. Здесь мы отождествляем напряжение в контуре с электрической составляющей поля Е (единица измерения В/м), а ток смещения с магнитной составляющей поля Н (единица измерения А/м), только диполь Тесла излучает синфазное поле Е и поле Н.

Попробуем еще раз рассмотреть данное утверждение немного в другой плоскости:

Допустим, мы имеем напряжение, приложенное к пластинам (реактивной составляющей нет, она скомпенсирована), которые нагружены на активное сопротивление среды Rср, как на участок электрической цепи (Рис. 4).

Вопрос: Имеется ли ток в среде (в цепи) именно в этот момент времени?

Ответ: Да, чем больше приложено напряжение к активному сопротивлению среды, тем больше ток смещения в этот же период времени, и это не противоречит закону Дж. К. Максвелла и если хотите закону Ома для участка цепи. По этому синфазное изменение величины напряжения и тока в последовательном контуре в режиме последовательного резонанса, вполне справедливо порождают синфазность полей Е и Н в среде, см. Рис. 4б.

Подводя итог, мы можем сказать, что емкостной излучатель создает вокруг себя мощное и концентрированное электромагнитное излучение. Диполь Тесла обладает особенностью накопления энергии, что характерно только последовательному LC-контуру, где суммарное выходное напряжение значительно превосходит входное, что наглядно видно по результатам таблицы. Данное свойство давно практикуют в промышленных радиоустройствах для повышения напряжения в устройствах с большим входным сопротивлением.

Таким образом, мы можем сделать следующий вывод:

Диполь Тесла — это высокодобротный последовательный колебательный контур, где сфера является открытым элементом, осуществляющим связь со средой. Индуктивность L является лишь закрытым элементом и резонансным трансформатором напряжения, не участвующим в излучении.

Внимательно изучив цели построения резонансного трансформатора Николы Тесла, невольно приходишь к выводу, что он был предназначен для передачи энергии на расстояние, но эксперимент был прерван, а потомкам остается догадываться о истинной цели этого чуда конца 19 и начала 20 века. Не случайно Никола Тесла в своих записях оставил следующее изречение: «Пусть будущее рассудит и оценит каждого по его трудам и достижениям. Настоящее принадлежит им, будущее, ради которого я работаю, принадлежит мне».

Краткая справка: Электромагнитная волна была открыта Максвеллом в 60-х годах 18 века при помощи емкостного излучателя. На рубеже 20-го века Н. Тесла доказал возможность передачи энергии на расстоянии при помощи емкостных излучателей резонансного трансформатора.

Г. Герц, продолжая опыты с электромагнитным полем и опираясь на теорию Максвелла в 1888 году доказал, что электромагнитное поле излучаемое емкостным излучателем равно полю излучаемое электрическим вибратором.

В настоящее время диполь Герца и магнитная рамка К. Брауна, открытая в 1916 году, широко используются на практике, а емкостной излучатель незаслуженно забыт. Уважая заслуги Максвелла и Тесла, автор данной статьи в память о них провел лабораторные эксперименты с емкостной антенной и принял решение обнародовать их. Эксперименты были проведены на частоте 7 МГц в домашних условиях и показали не плохие результаты.

ИТАК! Многочисленные эксперименты показали, что резонансные элементы любого контура можно изменять в разных пределах, и как с ними поступишь, так они и поведут себя. Интересно то, что если уменьшать излучающую емкость открытого контура, то для получения резонанса приходится увеличивать индуктивность. При этом на краях излучателя и других неровностях появляются стримеры (от англ. Streamer). Streamer — это тускло видимая ионизация воздуха (свечение ионов), создаваемая полем диполя. Это и есть резонансный трансформатор Тесла, каким мы его привыкли видеть на просторах Интернета.

Можно увеличить емкость и в режиме резонанса напряжений добиться максимальной отдачи сбалансированного электромагнитного поля и использовать изобретение Тесла, как диполь для передачи энергии на расстояния, т.е. как емкостную антенну. И все же, Тесла был прав, когда отказался от металлического сердечника внутри повышающей катушки, ведь он вносил потери в том месте, где зарождалась электромагнитная волна. Тем не менее, результаты экспериментов привели к единственно правильному условию, когда LC-параметры стали соответствовать табличным данным (табл. 1).


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)