|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Методы поиска и выбора решений. Минимаксный критерий. Критерий Байеса – Лапласа. Критерий СевиджаПринятие решения представляет собой выбор одного варианта из некоторого множества рассматриваемых вариантов: Будем рассматривать наиболее часто встречаемый случай, когда имеется лишь конечное число вариантов Условимся, что каждым вариантом однозначно определяется некоторый результат . Эти результаты должны допускать количественную оценку, которую также будем обозначать символом . Будем искать вариант с максимальным результатом, т.е. целью нашего выбора является . Результаты чаще характеризуются, как выигрыши, полезности или надежности. Таким образом, выбор оптимального варианта решения производится с помощью критерия . (1) Правило (1) интерпретируется следующим образом: множество оптимальных вариантов состоит из тех вариантов , которые принадлежат множеству всех вариантов и оценка максимальна среди всех оценок . Рассмотренный случай принятия решений, при котором каждому варианту решения соответствует единственное внешнее состояние (единственный результат), является случаем детерминированных решений. Этот случай является простейшим и частным. В более сложных структурах каждому варианту решения вследствие различных внешних условий могут соответствовать различные результаты решений. Под результатом решения будем понимать оценку, соответствующую варианту и условиям и характеризующую экономический эффект (прибыль), полезность или надежность изделия. Семейство решений описывается некоторой матрицей: . (2) Лицо, принимающее решение (ЛПР), старается выбрать решение с наилучшими результатами. В данном случае, первоначальная задача максимизации согласно критерию (1) должна быть заменена другой, которая будет учитывать все последствия любого из вариантов решения . Чтобы прийти к однозначному и наивыгоднейшему варианту решения, когда каким-либо вариантам решений могут соответствовать различные условия, можно ввести подходящие оценочные (целевые) функции. При этом матрица (2) сводится к одному столбцу.
. Каждому варианту приписывается, таким образом, некоторый результат, характеризующий, в целом, все последствия этого решения. Такой результат мы будем в дальнейшем обозначать символом . Процедура выбора оптимального решения сводится к проблеме вложения смысла в результат . С точки зрения ЛПР чаще желаемый результат формируется между оптимистическими и пессимистическими способами построения оценочных функций. Рассмотрим оценочные функции, которые может выбрать ЛПР. 1) Оптимистическая позиция ЛПР: . (3) Точка зрения азартного игрока. ЛПР делает ставку на то, что выпадет наивыгоднейший случай. 2) Позиция нейтралитета: . (4) ЛПР исходит из того, что все встречающиеся отклонения результата решения от «среднего» случая допустимы, и выбирает размеры, оптимальные с этой точки зрения. 3) Пессимистическая позиция ЛПР: . (5) ЛПР исходит из того, что надо ориентироваться на наименее благоприятный случай и приписывает каждому из альтернативных вариантов наихудший из возможных результатов. После этого он выбирает самый выгодный вариант, т.е. ожидает наилучшего результата в наихудшем случае. 4) Позиция относительного пессимизма ЛПР: . (6) Для каждого варианта решения ЛПР оценивает потери в результате по сравнению с определенным по каждому варианту наилучшим результатом, а затем из совокупности наихудших результатов ЛПР выбирает наилучший согласно представленной оценочной функции. Ряд таких оценочных функций можно было продолжить. Некоторые из них получили широкое распространение в хозяйственной деятельности. Так, если условия эксплуатации заранее не известны, ориентируются обычно на наименее благоприятную ситуацию. Это соответствует оценочной функции (5). Часто используются также функции (4) и (6). Оценочная функция (3) до сего времени в технических приложениях не применялась. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |