АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Адекватность математических методов

Читайте также:
  1. Абсолютная неадекватность
  2. Альпинистами используются несколько методов.
  3. Анализ математических аксиом
  4. Аудит на адекватность.
  5. Вывод палитр математических символов
  6. ИСПОЛЬЗОВАНИЕ КОМАНД ПРЕОБРАЗОВАНИЯ ВЫРАЖЕНИЙ MAPLE ДЛЯ МАТЕМАТИЧЕСКИХ ВЫЧИСЛЕНИЙ.
  7. ИСПОЛЬЗОВАНИЕ КОМАНД ПРЕОБРАЗОВАНИЯ ВЫРАЖЕНИЙ MAPLE ДЛЯ МАТЕМАТИЧЕСКИХ ВЫЧИСЛЕНИЙ.
  8. Криптографическое преобразование информации. Классификация методов. Виды криптоаналитических атак.
  9. Ролевая адекватность супружеской пары
  10. Ролевая адекватность супружеской пары
  11. Сравнительный анализ методов.

Одним из основных во­просов, встающих перед исследователем после осуществления измерения, является вопрос о том, какие математические методы он имеет право применять для анализа полученных чисел. Представля­ется целесообразным считать разрешенными (далее допустимыми, адекватными) только такие методы, результаты, применения которых не зависят от того, по какой из возможных шкал получены исходные данные. Необходимым условием такой независимости является инвариантность этих результатов относительно допустимых преоб­разований используемых шкал.

Основанием для такого подхода служит то, что именно такие результаты в принципе поддаются содержательной интерпретации, только они могут отражать реальные закономерности. Отметим, од­нако, что одной независимости результатов применения какого-либо метода от выбора конкретных используемых шкал отнюдь не доста­точно для того, чтобы попытка их содержательной интерпретации увенчалась успехом. Необходимо также содержательное осмысление соответствующих результатов хотя бы для одной из возможных шкал.

Подчеркнем, что понятие допустимости или недопустимости той или иной статистики (различных мер средней тенденции, мер раз­броса, коэффициентов связи между признаками и т. д.) является относительным. Все зависит от того, в каком «контексте», значения этой статистики используются, какие именно соотношения между этими значениями значимы для получения содержательных выводов. Так, сопоставление средних тенденций двух совокупностей может осуществляться с помощью сравнения средних арифметических значений некоторого признака по их величине, с помощью оценки разности (отношения) этих средних и т. д. И возможность исполь­зования средних арифметических значений зависит от того, какие именно соотношения между ними подлежат содержательной интер­претации.

Подчеркнем следующее. Если удалось показать, что некоторое числовое соотношение можно содержательно проинтерпретировать, то не имеет значения, удастся ли при этом найти эмпирические аналоги отдельных входящих в это соотношение операций над чис­лами. Например, можно делать содержательные выводы на основе сравнения по величине двух средних арифметических значений некоторого признака, никак не интерпретируя при этом суммы шкаль­ных значений, вычисляемые в процессе нахождения средних ариф­метических.



Как отмечалось выше, для проверки разрешенное любого со­отношения необходимо убедиться в том, что это соотношение инва­риантно относительно допустимых преобразований использовавшейся при измерении шкалы (или нескольких шкал, если исходные данные получены по разным шкалам, но мы такой случай рассматривать не будем). Однако на практике такая проверка бывает довольно сложной. Соответствующая проблема в теории измерений называ­ется проблемой адекватности рассматриваемого числового соотно­шения. Аналогично можно говорить о проблеме адекватности ре­зультатов применения какого-либо математического метода.

Естественно, что чем уже круг допустимых преобразований, тел большее количество математических соотношений оставляют эти преобразования без изменения. Другими словами, чем выше тип шкалы, чем выше уровень измерения, тем большее количество ма­тематических методов можно применять к шкальным значениям, получая при этом интерпретируемые результаты.

Вопрос об адекватности используемых в социологии математи­ческих методов, как правило, является весьма сложным. Получен­ные к настоящему времени результаты касаются лишь небольшого числа методов. Рассмотрим некоторые из них.

Прежде всего, остановимся на вопросе о корректности использования различного рода средних и коэффициентов связи между признаками.

Ясно, что любую статистику можно использовать в произвольном «контексте» только в том случае, если ее значение остается инва­риантным относительно применения к исходным данным любого допустимого преобразования соответствующей шкалы. Нетрудно показать, что для номинальной шкалы, удовлетворяющей такому условию, средней будет мода, для порядковой шкалы — медиана и другие квантили. Значение среднего арифметического остается без изменения лишь для абсолютных шкал. Поэтому обращение с ним требует известной осторожности. Однако можно показать11, что сравнивать по величине средние арифметические значения какого-либо признака можно уже в том случае, когда исходные данные получены по интервальной шкале (другими словами, результаты такого сравнения не изменяются при применении к исходным данным произвольного положительного линейного преобразования).

‡агрузка...

Относительно коэффициентов связи можно сказать следующее, Инвариантными относительно допустимых преобразований рассматриваемых шкал являются значения коэффициентов связи, рекомендуемых в § 6 настоящей главы для соответствующего уровня изме­рения. Так, значение коэффициента корреляции не изменяется при применении к исходным данным произвольного положительного линейного преобразования; значения коэффициентов Кендалла t и Спирмена r, инвариантны относительно произвольного монотонно возрастающего преобразования входящих в них величин; значения коэффициентов х2> Ф Р, К, Т инвариантны относительно произвольного взаимно однозначного преобразования исходных данных12.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)