АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Коэффициенты взаимозависимости для номинального

Читайте также:
  1. I. Расчет номинального значения величины тока якоря.
  2. II. Расчет номинального значения величины магнитного потока.
  3. Выбор номинального напряжения сети
  4. Дополнительные эксплуатационные коэффициенты для червячных редукторов
  5. Коэффициенты взаимозависимости для порядкового
  6. Коэффициенты включения колебательного контура
  7. Коэффициенты исчисляются путем сопоставления сведений о преступности с данными о населении.
  8. Коэффициенты к расценкам
  9. Коэффициенты корреляции между основными макроэкономическими и демографическими показателями, 2005-2009 гг.
  10. Коэффициенты корреляции между основными макроэкономическими показателями и индикаторами финансового рынка, 2005-2009 гг.
  11. Коэффициенты корреляции свойств характера внутри пар близнецов и сиблингов

уровня из­мерения.

Связь в табл. 2 X 2. Простейшая задача о взаимозависимости возникает тогда, когда имеются два признака, каждый из которых принимает два значения (табл. 13).

Представим данные о группировке по этим двум признакам так;

Для характеристики степени связи двух признаков применяется коэффициент Ф, определяемый формулой

Коэффициент Ф равен 0, если нет соответствия между двумя дихотомическими переменными, и равен 1 или —1, когда имеется полное соответствие между ними. В силу трудностей. с интерпрета­цией знака коэффициента для катетеризованных (поминальных) переменных часто используют в анализе лишь абсолютную величи­ну—|Ф|. Ф легко интерпретируется, поскольку показано, что он представляет собой просто коэффициент корреляции r, если значе­ния каждой дихотомической переменной обозначить 0 и 1.

Как уже отмечалось, Ф вычисляется для катетеризованных дан­ных, представляющих естественные дихотомии: пол, раса, и т. п. Приведение количественных переменных к дихотомическому виду связано.с выбором граничной точки разделения (например, мужчи­ны до 30 лет и мужчины старше 30 лет). Искусственная дихотомизация, столь часто необходимая в конкретном исследовании при изучении взаимосвязи признаков, может привести к тому, что одна часть дихотомической переменной по своему воздействию будет бо­лее значима для одной связи, другая —для другой, а это даст оши­бочный результат.

Измерение связи в табл. с X k. Рассмотрим теперь более общую ситуацию, когда две переменные классифицированы па две или более категории. Запишем это таким образом:

где nij частоты; ni— маргинальные суммы частот по строкам; nj— маргинальные суммы частот по столбцам. На с. 169—172 для выяс­нения отклонения от независимости распределения значений в по­добном случае использовался критерий c2. Однако сама величина c2не очень подходит в качестве меры связи, поскольку сильно зависит от числа категорий.

Нормированным коэффициентом корреляции для таблицы c X k является коэффициент сопряженности Пирсона (P)

Коэффициент Р = 0 при полной независимости признаков. Недо­статком, его является зависимость максимальной величины Р от размера таблицы (максимум Р достигается при c = k, но сама гра­ница изменяется с изменением числа категорий). В связи с этим возникают трудности сравнения таблиц разного размера.

Чтобы исправить указанный недостаток, Чупров ввел другую величину:

При с = kТ достигает +1 в случае полной связи, однако не обла­дает этим свойством при k не равно с.

Коэффициент Крамера (К) может всегда достигать +1 незави­симо от вида таблицы:

Для квадратной таблицы коэффициенты Крамера и Чупрова совпа­дают, а в остальных случаях К > Т.

Величина c2 быстро вычисляется с помощью формулы

Вычисление коэффициентов Р, Т и К связано с теми же ограни­чениями на х2, которые сформулированы на с. 172.

Следующая группа коэффициентов связи для категоризованных данных основана на предположении, что если две переменные свя­заны, то информация об одной переменной может быть использо­вана для предсказания другой. Так, если предположить, что связь между полом индивида и его отношением к правилам уличного движения абсолютно детерминирована, то согласно табл. 13 либо все мужчины были бы нарушителями, а женщины нет, либо наоборот. Поскольку это не так, то возникает несоответствие, или, как говорят, ошибка предположения абсолютной связи (обозначим величину этой ошибки 0А).

С другой стороны, можно предположить, что два признака абсо­лютно не связаны, и нельзя на основе одной переменной предска­зать другую. Поскольку это тоже не так, то возникает ошибка предположения об отсутствии связи (00).

может служить мерой относительного уменьшения ошибки при- использовании информации об одной пе­ременной для предсказания другой.

Признак, на основе которого предсказывается другой признак, будем называть независимой переменной, а предсказываемый — за­висимой.

Тогда для случая, когда зависимая переменная расположена по строкам таблицы (т. е. Категории расположены по строкам), вычис­ляется коэффициент связи lг:

где max n наибольшая частота в столбце r; max n j — наибольшая маргинальная частота для строк j.

Пример. Вычислим К2для данных табл. 13 в предположении, что K1 независимая переменная, а отношение к правилам уличного движения — зависимая

Таким образом, использование информации о поле обследованных для предсказания отношения к правилам движения не умень­шает относительной ошибки.

Если зависимая переменная — это категории столбцов таблицы, то совершенно аналогично предыдущему вычисляется

где mах nij — наибольшая частота в строке; max ni— наибольшая

маргинальная частота для столбцов i.

Для нашего примера, когда пол зависимая переменная, l = 0,4, т. е. получаем 40%-пое уменьшение в ошибке, если используем от­ношение к правилам в качестве предсказывающей пол нарушителя.

Коэффициенты А и К имеют пределы изменения от 0 до 1. Чем ближе Кг или Кс к 1, тем больше относительное уменьшение в ошиб­ке и большее соответствие (связь) между переменными. Эти коэф­фициенты могут быть использованы для таблиц любого размера.

В ряде случаев удобно использовать симметричную l:

Разнообразие корреляционных коэффициентов продиктовано стремлением отразить реально существующее разнообразие типов связей в природе и обществе. Поэтому данное обстоятельство сле­дует рассматривать скорее как свидетельство достоинств статисти­ческого аппарата, заключающихся в гибкости и большой приспособ­ленности его к анализу сложнейших взаимосвязей в социальной области. Каждый корреляционный коэффициент приспособлен дли измерения вполне определенного вида связи. Техника расчета и конструкция формулы одного и того же коэффициента могут изме­ниться в зависимости от того, какие (например, сгруппированные или не сгруппированные) данные приходится анализировать. Срав­ните, например, различные варианты формул для парного коэффи­циента корреляции r. Таким образом, применение того или иного показателя определяется природой данных и формой их представ­ления. Требуемая степень точности также может существенно по­влиять на выбор способа расчета связи в каждом конкретном слу­чае. Обычно оценка пригодности той или иной формулы произво­дится с учетом следующих факторов:

1) природы данных (качественные или количественные при­знаки);

2) формы и типа зависимости (линейная или нелинейная, поло­жительная или отрицательная связь);

3) требуемой точности расчетов (например, коэффициенты кор­реляции рангов rи t иногда могут использоваться вместо более точных мер rи t2);

4) удобства при вычислении и сравнительной простоты интер­претации;

5) трудностей технического порядка (имеется ли счетная техни­ка или нужно вести расчеты вручную);

6) распространенности использования того или иного коэффици­ента корреляции;

7) возможности сравнения различных коэффициентов.

Обычно предпочитают использовать наиболее распространенные в практике социологических исследований коэффициенты, так как тем самым достигается возможность сравнения полученных резуль­татов с материалами других исследований.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)