|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Расчет характеристик стратифицированной выборкиХарактеристики такой выборки рассчитываются как «взвешенные» величины: показатели по каждой страте комбинируются в общую среднюю; вклад групповых средних пропорционален «весу» каждой страты в выборочной или генеральной совокупности. В стратифицированной выборке общая дисперсия выборки имеет как бы два источника: дисперсию групповых средних, которые характеризуют каждую страту sx2, и среднюю дисперсию из дисперсий внутри каждой из этих страт s2i. Первую составляющую принято называть межгрупповой дисперсией, а вторую — внутригрупповой дисперсией. Это записывается следующим образом: s= sx2 + s2i (7) Расчет средней ошибки при отборе, пропорциональном численности единиц в стратах, производится по формуле
или, если пренебречь отношением n/N,
В выражениях (8) и (9) s2i вычисляется исходя из формулы (7), т. е. s2i=s2-s2x, где s2 — общая дисперсия выборки — подсчитывается как для простой выборки, не принимая во внимание стратификацию. Из соотношения для средней ошибки (7) следует, что ошибка стратифицированной выборки меньше средней ошибки чисто случайной выборки либо равна ей, когда межгрупповая дисперсия равна нулю. Пример. Предположим, что выборка содержит 5 страт (группы семей по среднему доходу6). Необходимо определить величину расходов на годовую, подписку. Из каждой 2-й страты взяты по две семьи (объем выборки n = 10, см. табл. 19).
. Таким образом, как видно из рассмотренного примера, стратифицированная выборка при прочих равных условиях дает более точные результаты.
5. 5.Многоступенчатые и комбинированные способы, формирования выборочной совокупности Выборка может строиться как одно или многоступенчатая. При многоступенчатом отборе на каждой ступени меняется единица отбора. Например, на первой ступени производится отбор промышленных предприятий, на второй — отбор бригад на предприятиях, попавших в выборку на первой ступени, на третьей — отбор рабочих из бригад, попавших в выборку на второй ступени отбора, и т. д. Необходимость многоступенчатого отбора вызвана, как правило, отсутствием информации о всех единицах генеральной совокупности. При многоступенчатом отборе для организации первой ступени необходимо иметь информацию о распределении' того или иного признака по всей совокупности единиц отбора первой ступени. Для организации второй ступени нужна уже только информация об отобранных единицах первой ступени. На первой ступени, как правило, используется случайный отбор, а, начиная со второй ступени случайно отбирается количество единиц, пропорциональное размеру соответствующей единицы предыдущей ступени и т. д. Доли отбора на каждой ступени комбинируются таким образом, чтобы в целом доля отбора выборки обеспечивала всем единицам генеральной совокупности равные шансы попасть в выборку. Пропорциональный способ организации многоступенчатой выборки имеет определенные неудобства. Социолог, с одной стороны, уменьшает объем выборки в целях экономии средств и сокращения сроков проведения исследования, а с другой,— соблюдая принцип пропорциональности, он может получить очень малочисленные группировки по отдельным факторам, которые окажутся недостаточными для статистического анализа. Существует несколько способов формирования многоступенчатых выборок. Для примера рассмотрим способ организации двухступенчатой выборки, отбор единиц которой на первой ступени осуществляется с вероятностью, пропорциональной размеру. Воспользуемся для примера условиями и задачами организации выборки в известном исследовании ленинградских социологов. Единицы первой ступени отбора — предприятия города. Составляется полный список единиц наблюдений первой ступени отбора — промышленных предприятий и численности молодых рабочих на каждом из них. Генеральная совокупность включала 50 таких предприятий.
Единицы отбора ранжируются по численности рабочих, выделенных в качестве единиц наблюдения принимается решение о включении в выборку определенного числа заводов, например пяти. По таблице случайных чисел выбирается чисел (М1, М2, М3, М4 и М5)между N1 и N (общей кумулированной численностью рабочих в генеральной совокупности). В выборку включаются те предприятия, чьи номера оказались в той же строке (j), которая соответствует кумуляте, содержащей одно из чисел Мk k=1/5 т. е. i = f, если N1+N2+…+Nj-1< Мk < N1, + N2 +…+ Nj по всем k. Вторая ступень отбора реализуется следующим образом. На каждом предприятии, включенном в выборку; выбирается одно и то же число рабочих (единиц второй ступени отбора). Далее отбор может быть случайным или систематическим. Ошибка многоступенчатой выборки (на примере двухступенчатой выборки). При многоступенчатом отборе (начиная с двухступенчатого) следует учитывать специфику расчета ошибки выборки. Каждая ступень отбора делает свой «вклад» в отклонение находимых оценок от истинных значений характеристик в генеральной совокупности. Для достаточно большого объема выборки существуют упрощенные формулы расчета средней ошибки.
где s21 —дисперсия единиц первой ступени отбора и n1 —их численность; n22 —дисперсия единиц второй ступени отбора и n2 — их численность в составе единиц первой ступени отбора в выборке. В формуле учтены оба источника ошибок репрезентативности при двухступенчатом отборе. Первый член формулы под корнем указывает на дисперсию, вызванную формированием первой - ступени отбора. Второй член указывает на внутригрупповую дисперсию, связанную с организацией второй ступени выборки. Упрощенность этой формулы состоит в том, что внутригрупповые дисперсии рассчитываются внутри каждой единицы первой ступени после отбора из нее единиц второй ступени. Здесь указана «невзвешенная» средняя из квадратов ошибок по всей сумме единиц второй ступени (n2). Это второй источник случайных ошибок. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |