|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Ортогональные операторы на евклидовой плоскостиВыберем на евклидовой плоскости какой-либо ортонормированный базис . Если А – матрица ортогонального оператора в этом базисе, то она ортогональна. Значит, . Найдем характеристический многочлен матрицы А:
. Рассмотрим сначала случай, когда . Тогда характеристическое уравнение имеет вид . Это уравнение имеет два различных действительных корня. Значит, ортогональный оператор имеет два различных собственных значения: и . В таком случае в существует ортонормированный базис , состоящий из собственных векторов оператора , в котором матрица оператора имеет диагональный вид: . Линейный оператор с этой матрицей, как мы знаем, есть не что иное, как оператор симметрии относительно оси, направление которой задается вектором . Пусть теперь . Определим в этом случае элементы матрицы А, учитывая, что она ортогональная, т. е. что . Пусть . Тогда , откуда получаем систему для определения элементов матрицы: (7.24) Из первых двух уравнений системы (7.24) видно, что можно положить , где и – некоторые углы, причем (так как нам важно знать не сами углы, а значения их синусов и косинусов). Последние два уравнения этой системы определяют соотношения между углами и :
.
Значит, матрица А выглядит так: . Как мы уже знаем, это матрица оператора поворота плоскости на угол вокруг начала координат. В частности, если , то , т. е. получаем тождественный оператор. Если же , то . Этой матрице соответствует оператор симметрии относительно начала координат. Таким образом, ортогональные операторы на евклидовой плоскости – это тождественный оператор, симметрия относительно начала координат или относительно некоторой оси, либо поворот плоскости вокруг начала координат.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |