Виду пары квадратичных форм
Теорема 7.15. Пусть и – квадратичные формы на действительном линейном пространстве , причем одна из них положительно определена. Тогда в существует базис, в котором обе квадратичные формы имеют канонический вид.
►Пусть, например, квадратичная форма положительно определена. Тогда соответствующая ей симметричная билинейная форма тоже положительно определена. С помощью этой билинейной формы можно задать скалярное произведение на линейном пространстве и после этого оно превращается в евклидово пространство . Согласно теореме 7.7, в существует ортонормированный базис
, (7.27)
в котором форма имеет канонический вид. Так как базис (7.27) ортонормированный, то . Значит, квадратичная форма в базисе (7.27) имеет единичную матрицу, и поэтому форма в этом базисе имеет нормальный вид. ◄
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Поиск по сайту:
|