|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
В трехмерном евклидовом пространствеИзвестно, что всякий многочлен третьей степени с действительными коэффициентами имеет, по крайней мере, один действительный корень. Поэтому всякий линейный, в том числе и ортогональный оператор имеет, по крайней мере, одно собственное значение , причем . Пусть – единичный собственный вектор ортогонального оператора с собственным значением . Обозначим и рассмотрим . Очевидно, – двумерное евклидово пространство. Выберем произвольные векторы и . Тогда – собственный ортогональность . Обозначим такой линейный оператор, что ( отличается от только областью определения). Очевидно, – тоже ортогональный оператор. Как и в любом евклидовом пространстве, в пространстве можно выбрать ортонормированный базис . Тогда – ортонормированный базис пространства . Матрица оператора в этом базисе имеет блочно диагональный вид , где – матрица оператора в базисе . В силу того, что оператор ортогональный, матрица тоже ортогональная. Это значит, что в подходящем ортонормированном базисе она может быть одной из матриц:
. Перечисляя всевозможные принципиально различные виды матриц в подходящем ортонормированном базисе пространства , получаем а) .
, – тождественный оператор; , – симметрия относительно оси с направлением вектора ; , – симметрия относительно плоскости, перпендикулярной вектору ; , – поворот вокруг оси с направлением вектора .
б) . , – симметрия относительно плоскости, перпендикулярной вектору ; , – симметрия относительно начала координат; , – симметрия относительно оси с направлением вектора ; , – композиция поворота вокруг оси с направлением вектора и симметрии относительно плоскости, перпендикулярной этому же вектору. Таким образом, все ортогональные операторы в трехмерном евклидовом пространстве – это: тождественный; симметрия относительно плоскости; симметрия относительно оси; симметрия относительно начала координат; поворот вокруг оси и композиция поворота вокруг оси и симметрии относительно плоскости, перпендикулярной этой же оси.
Симметричные операторы в Как было доказано в § 3, для любого симметричного оператора в существует ортонормированный базис, в котором матрица оператора имеет диагональный вид. Перечислим все принципиально возможные различные случаи. – тождественный оператор; – симметрия относительно оси; – симметрия относительно плоскости; – симметрия относительно начала координат; (перечисленные операторы одновременно являются и ортогональными); – нулевой оператор; – проектирование на ось с направлением вектора ; – проектирование на плоскость, перпендикулярную вектору ; – растяжение при и сжатие при ; – растяжение от оси при и сжатие к оси при ; – растяжение вдоль оси при и сжатие вдоль оси при . Рассмотрим теперь некоторую диагональную матрицу , в которой, например, . Тогда
, т. е. оператор, заданный матрицей , есть композиция растяжений (или сжатий) вдоль трех взаимно перпендикулярных осей и симметрии относительно оси. Любая диагональная матрица может быть представлена в виде произведения перечисленных выше десяти простейших матриц. Например, при положительных и
, откуда вытекает, что оператор с такой матрицей есть композиция двух растяжений вдоль осей, проектирования на плоскость и симметрии относительно другой плоскости.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |