АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Примеры числовых последовательностей

Читайте также:
  1. Иллюстрированные примеры на разновидности иронии приводимые Трифоном, Хировоском и Г. Г. Хазагеровым
  2. К каким экологическим последствиям приводят стихийные бедствия? Приведите примеры.
  3. Константа Описание Примеры
  4. Методика изучения числовых систем
  5. П. 1 Определение и примеры
  6. ПО обработки числовых данных
  7. Правила и примеры округления результатов измерений
  8. Примеры
  9. Примеры
  10. Примеры
  11. Примеры
  12. Примеры 1.

Понятие числовой последовательности.

Пусть каждому натуральному числу n соответствует число an, тогда говорят, что задана функция an=f(n), которая называется числовой последовательностью. Обозначается an,n=1,2,… или {an}.

Числа a1,a2,… называются членами последовательности или ее элементами, an– общим членом последовательности, n – номером члена an.

По определению любая последовательность содержит бесконечное множество элементов.

Примеры числовых последовательностей.

Арифметическая прогрессия – числовая прогрессия вида:

то есть последовательность чисел (членов прогрессии), каждое из которых, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага или разности прогрессии): .

Любой член прогрессии может быть вычислен по формуле общего члена:

Любой член арифметической прогрессии, начиная со второго, является средним арифметическим предыдущего и следующего члена прогрессии:

Сумма n первых членов арифметической прогрессии может быть выражена формулами:

Сумма n последовательных членов арифметической прогрессии начиная с члена k:

Пример суммы арифметической прогрессии является сумма ряда натуральных чисел до n включительно:

Геометрическая прогрессия - последовательность чисел (членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где , :

Любой член геометрической прогрессии может быть вычислен по формуле:

Если b1 > 0 и q > 1, прогрессия является возрастающей последовательностью, если 0 < q < 1, — убывающей последовательностью, а при q < 0 — знакопеременной.

 

Своё название прогрессия получила по своему характеристическому свойству: то есть каждый член равен среднему геометрическому его соседей.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

Произведение членов геометрической прогрессии начиная с k-ого члена, и заканчивая n-ым членом, можно рассчитать по формуле:

Сумма n первых членов геометрической прогрессии:

Если , то при , и

при .


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)