|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Вопрос 8. Корреляция. Применения корреляции в измерении. Коэффициент ранговой корреляции СпирменаКорреля́ция (от лат. correlatio — соотношение, взаимосвязь), корреляционная зависимость — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин.[1] Математической мерой корреляции двух случайных величин служит корреляционное отношение [2], либо коэффициент корреляции (или)[1]. В случае, если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической[ Иногда маркетологу необходимо вычислить коэффициент корреляции между двумя немет рическими переменными. Вспомним, что неметрические переменные нельзя измерить с помошью интервальной или относительной шкалы и они не подчиняются закону нормального распределения. Если мы имеем дело с порядковыми и числовыми неметрическими переменными, то для изучения связи между ними можно использовать два показателя неметрической корреляции (nonmetric correlation): коэффициент ранговой корреляции Спирмена д. (Spearmen1rho ps) и коэффициент ранговой корреляции Кендалла т (Kendall's tau т). Для вычисления обоих коэффициентов используют ранги, а не абсолютные значения пе ременных, и подход, лежащий в основе их применения, совершенно одинаков. Оба коэффициента изменяются в диапазоне от—1 до+1 целесообраз но использовать коэффициент ранговой корреляции Спирмена, когда мы имеем относительно большое число категорий (что приводит к небольшому количеству совпадающих рангов). Каждому показателю X и Y присваивается ранг. На основе полученных рангов рассчитываются их разности и вычисляется коэффициент корреляции Спирмена:
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |