АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Проблема інтерпретації квантової механіки. Принцип додатковості

Читайте также:
  1. I. Назначение, классификация, устройство и принцип действия машины.
  2. II. Методологічні засади, підходи, принципи, критерії формування позитивної мотивації на здоровий спосіб життя у дітей та молоді
  3. II. Основные принципы и правила поведения студентов ВСФ РАП.
  4. II. Проблема социокультурной динамики – центральная тема в творчестве П. Сорокина.
  5. VII. ПРИНЦИП ИГРЫ.
  6. Анализ по принципу Эйзенхауэра
  7. Анализ по принципу Эйзенхауэра
  8. Антикорупційні принципи
  9. Антицерковні інтерпретації (напр., Мандрівка Богородиці по мукам з Михайлом Архангелом та 400 ангелами до Аду).
  10. Антропологический принцип философии Л.Фейербаха
  11. Арал проблемасы
  12. Архитектура компьютера и принцип программного управления

Створений групою фізиків у 1925-1927 р. формальний матема­тичний апарат квантової механіки переконливо продемонстрував свої широкі можливості в кількісному охопленні значного емпіричного матеріалу. Не залишалося сумнівів, що квантова механіка придатна для опису певного кола явищ. Разом з тим виняткова абстрактність квантово-механічних формалізмів, значні відмінності від класичної механіки, заміна кінематичних й динамічних змінних абстрактними символами некомутативної алгебри, відсутність поняття електронної орбіти, необхідність інтерпретації формалізмів тощо, породжували відчуття незавершеності, неповноти нової теорії. У результаті виникла думка про необхідність її завершення.

Виникла дискусія про те, яким шляхом це потрібно робити. А. Ейнштейн і ряд фізиків вважали, що квантово-механічний опис фізичної реальності істотно неповний. Інакше кажучи, створена теорія не є фундаментальною теорією, а лише проміжним щаблем стосовно неї, тому її необхідно доповнити принципово новими постулатами і поняттями, тобто допрацьовувати ту частину підстав нової теорії, що пов’язана з її принципами.

Розробка методологічних установок квантової механіки, що була найважливішою ланкою в інтерпретації цієї теорії, тривала аж до кінця 40-х років. Завершення вироблення цієї інтерпретації означало й завершення наукової революції у фізиці, що почалася наприкінці XIX ст.

Основною відмінною рисою експериментальних досліджень в області квантової механіки є фундаментальна роль взаємодії між фізичним об’єктом та вимірюваним пристроєм. Це пов’язано з корпускулярно-хвильовим дуалізмом. І світло, і частки проявляють у різних умовах суперечливі властивості, у зв’язку з чим про них виникають суперечливі уявлення. В одному типі вимірювальних приладів (дифракційна решітка) вони представляються у вигляді безперервного поля, розподіленого в просторі, є це світлове поле чи поле, що описується хвильовою функцією. В іншому типі приладів (бульбашкова камера) ці ж мікроявища виступають як частки, як матеріальні точки. Причина корпускулярно-хвильового дуалізму, за Бором, в тому, що сам мікрооб’єкт не є ні хвилею, ні частинкою у звичайному розумінні.

Неможливість проведення точної межі між об’єктом і приладом у квантовій фізиці висуває два завдання: 1) яким чином можна відрізнити знання про об’єкт від знань про прилад; 2) яким чином, розрізнивши їх, зв’язати в єдину картину теорію об’єкта.

Перше завдання виконується шляхом введенням вимоги описання поведінки приладу мовою класичної фізики, а принципово статистичну поведінку мікрочастинок – мовою квантово-механічних формалізмів. Друге завдання вирішується за допомогою принципу додатковості: хвильовий і корпускулярний описи мікропроцесів не виключають і не заміняють, а взаємно доповнюють один одного. При одному уявленні мікрооб’єкта використовується причинний опис відповідних процесів, в іншому випадку – просторово-тимчасовий. Єдина картина об’єкту синтезує ці два описи.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)