АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ГАЗООБРАЗНЫЕ ДИЭЛЕКТРИКИ

Читайте также:
  1. ВОСКООБРАЗНЫЕ ДИЭЛЕКТРИКИ
  2. Газообразные вещества.
  3. Диэлектрики, полупроводники и проводники.
  4. СИНТЕТИЧЕСКИЕ ЖИДКИЕ ДИЭЛЕКТРИКИ

Среди газообразных диэлектриков прежде всего должен оыгь упомянут воздух, который в силу своей всеобщей распространенности даже помимо нашей воли, часго входит в состав электрических устройств и играет в них роль электрической изо­ляции, дополнительной к твердым или жидким электроизоляционным материалам, В отдельных частях электрических установок, например на участках воздушных линий электропередачи между опорами, воздух образует единственную изоляцию между неизолированными проводами линии. При недостаточно тщательно проведен­ной пропитке изоляции электрических машин, кабелей, конденсаторов в ней могут оставаться воздушные включения, часто весьма нежелательные, так как они при высоком рабочем напряжении изоляции могут стать очагами образования ионизации (см. § 4-2).

Поскольку электроизоляционные свойства воздуха уже рассмотрены ранее, а общие физико-химические свойства его широко известны из курсов физики и хи­мии, нет надобности более подробно останавливаться на этих вопросах. Рассмотрим кратко некоторые газы, которые могут представить интерес для практики.

При прочих равных условиях (при одинаковых давлении и температуре, форме электродов, расстоянии между ними) различные газы могут иметь заметно раз­личающиеся значения электрической прочности. Азот имеет практически одинаковую с воздухом электрическую прочность; он нередко применяется вместо воздуха для заполнения газовых конденсаторов и для других целей, поскольку, будучи близок по электрическим свойствам к воздуху, не содержит кислорода, который оказывает

Электродн>"-сферы диаметром 12,5 мм, расстояние между ними 5 мм. Для сопоставления

ввездочкой отмечено значение пробивного напряжения трансформаторного масла средней

степени очистки между теми же электродами при нормальном атмосферном давлении

окисляющее действие на соприкасающиеся с ним материалы. Однако некоторые газы, имеющие высокую молекулярную массу, и соединения, содержащие галогены (фтор, хлор), для ионизации которых требуется большая энергия, имеют заметно повышенную по сравнению с воздухом электрическую прочность.

Так, гексафторид серы (шестифтористая сера) SFe имеет электрическую проч­ность примерно в 2,5 раза выше, чем у воздуха; в связи с этим гексафторид серы был назван впервые исследовавшим этот газ советским ученым Б. М. Гохбергом эле-гавом (сокращение от слов «электричество» и «газ»). На рис. 6-1 приведены значения пробивного напряжения между двумя металлическими дисковыми электродами о закругленными краями в воздухе и в элегазе в зависимости от абсолютного давле­ния газа. Как видно из табл. 6-1, элегаз примерно в 5,1 раза тяжелее воздуха и обладает низкой температурой кипения; он может быть сжат (при нормальной температуре) до давления 2 МПа без сжижения. Элегаз нетоксичен, химически стоек, не разлагается при нагреве до 800 °С, его с успехом можно использовать в конденсаторах, кабелях и т. п. Особенно велики преимущества элегаза при повышенных давлениях (рис. 6-2).

Дихлордифторметан CC12F2 — так называемый хладон-12, имеет электрическую прочность, близкую к электрической прочности элегаза, но его температура кипения всего лишь 242,7 К (—30,5 °С), и он при нормальной температуре может быть сжат без сжижения лишь до 0,6 МПа. Хладон-12 вызывает коррозию некоторых твердых органических электроизоляционных материалов, что надо иметь в виду при кон­струировании электрических холодильников.

Многие перфторированные углеводороды, т. е. углеводороды, в молекулах кото­рых все атомы водорода заменены атомами фтора, имеющие общий состав Сх¥у при нормальных условиях, являются газами (например, CF4, C2Fe, C3FS, C4F8, QFjo) или жидкостями (например, C7F8, C7FfЈ, C8Fle, Q4F24). Электрическая прочность некоторых из этих газов, а также паров жидкостей существенно (в шесть—десять раз) превосходит электрическую прочность воздуха. Как видно из рис. 6-2, электри­ческая прочность фторсодержащих газов и паров при нормальных условиях может быть того же порядка, что и электрическая прочность электроизоляционных жидко­стей; в то же время рассматриваемые газы по сравнению с жидкими диэлектриками (§ 6-3, 6-4) имеют такие преимущества, как значительно меньшая плотность (что приводит к уменьшению массы заполняемых газом аппаратов), более высокая на-02

гревостойкость и стойкость к старе­нию. Даже небольшая примесь к воз­духу элегаза, фреона, перфтороргани-ческих газов или паров заметно по­вышает его электрическую прочность, что используется в некоторых элек­трических устройствах высокого на­пряжения.

Значительный интерес для элек­тротехники представляет водород. Это очень легкий газ, обладающий весьма благоприятными свойствами для использования его в качестве охлаждающей среды вместо воздуха (как видно из табл. 6-1, водород характеризуется высокой теплопроводностью и удельной теплоемкостью). При использовании водорода охлаждение вращающихся электрических машин суще­ственно улучшается. Кроме того, при замене воздуха водородом заметно снижаются потери мощности на трение ротора машины о газ и на вентиляцию, так как эти по­тери приблизительно пропорциональны плотности газа. Ввиду отсутствия окисля­ющего действия кислорода воздуха замедляется старение органической изоляции обмоток машины и устраняется опасность пожара при коротком замыкании внутри машины. Наконец, в атмосфере водорода улучшаются условия работы щеток. Так как водородное охлаждение позволяет повысить мощность машины и ее КПД, и поэтому крупные турбогенераторы и синхронные компенсаторы выполняются с водородным охлаждением (еще более эффективное охлаждение достигается цир­куляцией жидкости внутри полых проводников обмоток статора и даже — что, ко­нечно, технически сложнее — ротора). Применение циркуляционного водородного охлаждения требует герметизации машины (подшипники уплотняются при помощи масляных затворов). Чтобы избежать попадания внутрь машины воздуха (водород при содержании его в воздухе от 4 до 74 % по объему образует взрывчатую смесь — гремучий газ), внутри машины поддерживается некоторое избыточное давление, сверх атмосферного; постепенная утечка водорода восполняется подачей газа из баллонов. При прочих равных условиях электрическая прочность водорода примерно на 40 %, а угольного ангидрида СО2 — на 10 % ниже, чем электрическая прочность воздуха. Для заполнения газоразрядных приборов употребляются инертные газы ар­гон, неон и другие, а также пары ртути и натрия. Инертные газы обладают низкой элек­трической прочностью. Следует отметить весьма малую теплопроводность криптона и ксенона; это обстоятельство используется в производстве некоторых типов электричес­ких ламп. Особо большое значение в качестве низкотемпературного хладагента, в част­ности для устройств, использующих явление сверхпроводимости, имеет сжиженный ге­лий. Гелий представляет собой исключительно интересный газ, обладающий уникаль­ными свойствами. Так, у него самая низкая по сравнению с другими газами (если не считать легкого изотопа того же элемента, см. ниже) температура сжижения (4,216 К при атмосферном давлении). Жидкий гелий имеет очень малую плотность (примерно в восемь раз меньше плотности воды при нормальной температуре; однако еще меньшей плотностью обладает жидкий водород). Квантовомеханическкв явления в жидком гелии делают его поведение во многом сходным с поведением газов, а не жидкостей. Диэлектрическая проницаемость жидкого гелия мала (1,047 при температуре кипения и 1,056 при 1,8 К); эти значения того же порядка, Что и гг газов. Весьма мало различие коэффициентов теплопроводпостей жидкого и газообразного гелия: отношение коэффициентов теплопроводности жидкости и газа составляет лишь 1,3. Мало и поверхностное натяжение жидкого гелия. Теплота испарения его чрезвычайно низка, что существенно для криогенной техники.

Легкий изотоп гелия Не3 с атомной массой 3, находится в природном гелии, в количестве примерно равном одной части на миллион частей обычного гелия Не4, имеющего атомную массу, равную четырем. Не3 также может быть получен искус­ственным путем в атомных реакторах, в частности, из лития. Легкий гелий сжи­жается при еще более низкой температуре (3,195 К), чем Не4; он не переходит в сверхтекучее состояние вплоть до температуры 0,001 К, однако растворы Не3 и Не4 при некоторых соотношениях между компонентами обладают сверхтекучестью. Разделить изотопы Не3 и Не4 можно дробной перегонкой, благодаря различию их температур кипения, а также используя явление сверхтекучести Не4. Свойства растворов! Не3 — Не4 используются в некоторых системах особо глубокого охла­ждения.

Иногда в качестве криогенного хладагента применяется жидкий неон, темпе­ратура кипения, которого лишь ненамного превосходит температуру кипения водо­рода. Для неона, как и для других инертных газов, характерно весьма малое раз­личие между температурой, кипения ТК1т и температурой плавления Гпл. Так, для неона; разность Ttmxl — Тпя составляет всего 3Г5 К, в то время как для азота, например, эта. разность около 14 К, а для кислорода — около 36 К.

Химическая инертность неона — это его преимущество перед взрывоопасным (см. стр. 93) водородом. Однако неон очень дорогой газ: если принять относитель­ную стоимость. I м3 азота за единицу, то стоимость водорода будет около 2, гелия — 80 и неона — 30 000 единиц.

Жидкий азот легко получается при разделении воздуха на азот и кислород; жидкий водород производится промышленностью многих стран (как ракетное топ­ливо) в больших количествах.

Для получения умеренно низких температур широко применяется твердый угольный ангидрид СО2 — «сухой лед» (см. табл. 6-1).

Вопрос 18


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)