АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

КЛАССИФИКАЦИЯ ДИЭЛЕКТРИКОВ ПО ВИДУ ПОЛЯРИЗАЦИИ

Читайте также:
  1. I. Назначение, классификация, устройство и принцип действия машины.
  2. I. Определение, классификация и свойства эмульсий
  3. I. Определения понятий. Классификация желтух.
  4. II. Классификация С/А в зависимости от способности всасываться в кровь и длительности действия.
  5. V.2 Классификация банковских кредитов
  6. VI. ЕДИНАЯ ВСЕРОСИИЙСКАЯ СПОРТИВНАЯ КЛАССИФИКАЦИЯ ТУРИСТСКИХ МАРШРУТОВ (ЕВСКТМ) (КАТЕГОРИРОВАНИЕ МАРШУТА И ЕГО ОПРЕДЕЛЯЮЩИХ ПРЕПЯТСТВИЙ (ФАКТОРОВ)
  7. Акты официального толкования норм права: понятие, признаки, классификация.
  8. Акты применения норм права: понятие, классификация, эффектив-ность действия. Соотношение нормативно-правовых и правоприменительных актов.
  9. Алюминий. Классификация сплавов на основе алюминия, маркировка
  10. Аномалии развития органов и систем. Классификация аномалий развития.
  11. Антивирусные программы, классификация и назначение
  12. Артерии. Морфо-функциональная характеристика. Классификация, развитие, строение, функция артерий. Взаимосвязь структуры артерий и гемодинамических условий. Возрастные изменения.

Все диэлектрики по виду подразделяются на несколько групп.

К первой группе можно отнести диэлектрики, обладающие в основ­ном только электронной поляризацией, например неполярные и слабополярные твердые вещества в кристаллическом и аморфном состояниях (парафин, сера, полистирол), а также неполярные и слабополярные жидкости и газы (бензол, водород и др.).

Ко второй группе относятся диэлектрики, обладающие одновре­менно электронной и дипольно-релаксационной поляризациями.

Сюда принадлежат полярные (дипольные) органические, полужидкие и твердые вещества (масляно-канифольные компаунды, эпоксидные смолы, целлюлоза, некоторые хлорированные углеводороды и т. п.).

Третью группу составляют твердые неорганические диэлектрики с электронной, ионной и ионно-электронно-релаксационной поля­ризациями. В этой группе целесообразно выделить две подгруппы материалов ввиду существенного различия их электрических ха­рактеристик:

диэлектрики с электронной и ионной поляризациями;

диэлектрики с электронной, ионной и релаксационными поля­ризациями.

К первой подгруппе преимущественно относятся кристаллические вещества с плотной упаковкой ионов [кварц, слюда, каменная соль (см. рис. В-2, а), корунд, рутил]. Ко второй подгруппе принадлежат неорганические стекла, материалы, содержащие стекловидную фазу (фарфор, микалекс), и кристаллические диэлектрики с неплотной упаковкой частиц в решетке.

Четвертую группу составляют сегнетоэлектрики, характеризу­ющиеся спонтанной, электронной, ионной и электронно-ионно-релаксационной поляризациями (сегнетова соль, титанат бария и др.).

Приведенная выше классификация диэлектриков отражает в до­статочной степени основные электрические свойства.

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ ГАЗОВ

Газообразные вещества характеризуются весьма малыми плотностями вслед­ствие больших расстояний между молекулами. Поэтому диэлектрическая проница­емость всех газов незначительна и близка к единице.

Поляризация газа может быть чисто электронной или же дипольной, если моле­кулы газа полярны, однако и для полярных газов основное значение имеет элек­тронная поляризация.

Изменение числа молекул в единице объема газа п0 при изменении температурь и давления вызывает изменение диэлектрической проницаемости газа (табл. 1-2 1-3). Число молекул N пропорционально давлению и обратно пропорциональнс абсолютной температуре.

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ ЖИДКИХ ДИЭЛЕКТРИКОВ

Жидкие диэлектрики могут быть построены из неполярных мо­лекул или из полярных (дипольных). Значения диэлектрической проницаемости неполярных жидкостей невелики

Вопрос 2

ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ

ОСНОВНЫЕ ПОНЯТИЯ

Поляризационные процессы смещения связанных зарядов в ве­ществе до момента установления равновесного состояния протекают во времени, создавая токи смещения, в диэлектриках. Токи смеще­ния упругосвязанных зарядов при электронной и ионной поляри­зациях столь кратковременны, что их обычно не удается зафиксиро­вать прибором. Токи смещения различных видов замедленной поля­ризации, наблюдаемые у большого числа технических диэлектриков, называют абсорбционными токами. При постоянном напряжении абсорбционные токи, меняя свое направление, протекают только в моменты включения и выключения напряжения; при переменном напряжении они протекают в течение всего времени нахождения материала в электрическом поле.

Наличие в технических диэлектриках небольшого числа свобод­ных зарядов приводит к возникновению слабых по величине сквоз­ных токов. Ток утечки в техническом диэлектрике представляет собой сумму сквозного тока и тока абсорбции.

обусловленного мгновенными (электронными, ионными) и замедлен­ными смещениями зарядов.

Как видно из рис. 2-1, после завершения процессов поляризации через диэлектрик протекает только сквозной ток. Токи смещения необходимо принимать ро внимание при измерениях проводимости диэлектриков ввиду того, что при неболь­шой выдержке образца диэлектрика под напряжением обычно регистрируется не только сквозной ток, но и сопровождаю­щий его ток абсорбции, вследствие чего может создаться неправильное представ­ление о большой проводимости. Проводи­мость диэлектрика при постоянном напря­жении определяется по сквозному току, сопровождающемуся выделе­нием и нейтрализацией зарядов на электродах. При переменном напря­жении активная проводимость определяется не только сквозным током, но и активными составляющими абсорбционных токов.

Особенностью электропроводности диэлектриков в большинстве случаев является ее неэлектронный (ионный) характер.

Поскольку при определении абсорбционных токов даже замед­ленных видов поляризации возникают некоторые трудности, сопро­тивление диэлектрика рассчитывают обычно как частное от деления напряжения на ток, измеренный через одну минуту после включе­ния напряжения и принимаемый за сквозной ток.

Для твердых электроизоляционных материалов необходимо раз­личать объемную и поверхностную проводимость.

Для сравнительной оценки объемной и поверхностной проводи­мости различных материалов пользуются значениями удельного объемного сопротивления р и удельного поверхностного сопротив­ления ps.

По удельному объемному сопротивлению может быть определена удельная объемная проводимость, по удельному поверхностному сопротивлению — удельная поверхностная проводимость.

В системе СИ удельное объемное сопротивление р равно объем­ному сопротивлению куба с ребром в 1 м, мысленно вырезанного из исследуемого материала (если ток проходит сквозь куб, от одной его грани к противоположной), умноженному на 1м.

Для плоского образца материала в однородном поле удельное объемное сопротивление (ом-метр) рассчитывается по формуле

Удельное поверхностное сопротивление равно сопротивлению квадрата (любых размеров), мысленно выделенного на поверхности материала, если ток проходит через квадрат, от одной его стороны к противоположной.

Удельная поверхностная проводимость ys измеряется в сименсах.

Полная проводимость твердого диэлектрика, соответствующая его сопротивлению изоляции, складывается из объемной и поверх­ностной проводимостей.

Электропроводность изоляционных материалов обусловливается состоянием вещества: газообразным, жидким или твердым, а также зависит от влажности и температуры окружающей среды. Некоторое влияние на проводимость диэлектриков оказывает также напряжен­ность поля в образце, при которой проводится измерение.

При длительной работе под напряжением ток через твердые и жидкие диэлектрики с течением времени может уменьшаться или увеличиваться. Уменьшение тока со временем говорит о том, что электропроводность материала была обусловлена ионами посторон­них примесей и уменьшалась за счет электрической очистки образца. Увеличение тока со временем говорит об участии в нем зарядов, являющихся структурными элементами самого материала, и о про­текающем в нем под напряжением необратимом процессе старения, способном постепенно привести к разрушению — пробою диэлек­трика.

Таким образом, определив постоянную времени как время, по истечении которого напряжение на выводах конденсатора умень­шится вследствие саморазряда в е = 2,7 раза, зная вид материала (а следовательно, и его диэлектрическую проницаемость) и предпо­лагая наличие только объемного тока утечки, можно оценить удель­ное сопротивление использованного диэлектрика.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)