АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Гладкая мышечная ткань нейрального происхождения
Миоциты этой ткани развиваются из клеток нейрального зачатка в составе внутренней стенки глазного бокала. Тела этих клеток располагаются в эпителии задней поверхности радужки. Каждая из них имеет отросток, который направляется в толщу радужки и ложится параллельно ее поверхности. В отростке находится сократительный аппарат, организованный так же, как и во всех гладких миоцитах. В зависимости от направления отростков (перпендикулярно или параллельно краю зрачка) миоциты образуют две мышцы — суживающую и расширяющую зрачок.
37. Морфо - функциональная характеристика гладкого миоцита (СМ и ЭМ).
Структурно-функциональной единицей гладкой, или неисчерченной, мышечной ткани является гладко-мышечная клетка, или гладкий миоцит — это веретеновидная клетка длиной 20—500 мкм, шириной 5—8 мкм. Ядро клетки палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается. Органеллы общего значения, среди которых много митохондрий, сосредоточены в цитоплазме около полюсов ядра. Аппарат Гольджи и гранулярная эндо плазматическая сеть развиты слабо, что свидетельствует о малой активности синтетических функций. Рибосомы в большинстве своем расположены свободно.
Структура дефинитивных гладких миоцитов (лейомиоцитов), входящих в состав внутренних органов и стенки сосудов, имеет много общего, но в то же время характеризуется гетероморфией. Так, в стенках вен и артерий обнаруживаются овоидные, веретеновидные, отростчатые миоциты длиной 10-40 мкм, доходящие иногда до 140 мкм. Наибольшей длины гладкие миоциты достигают в стенке матки — до 500 мкм. Диаметр миоцитов колеблется от 2 до 20 мкм. В зависимости от характера внутриклеточных биосинтетических процессов различают контрактилъные и секреторные миоциты. Первые специализированы на функции сокращения, но вместе с тем сохраняют секреторную активность. Плазмолемма расслабленной клетки имеет ровную поверхность, а при сокращении становится складчатой. В центре клетки имеется палочковидное ядро, которое при сокращении клетки спиралевидно изгибается. Практически все ядра миоцитов содержат диплоидное количество ДНК. Гладкая эндоплазматическая сеть занимает примерно 2-7% объема цитоплазмы, а гранулярная сеть в контрактильных миоцитах выражена плохо. Митохондрии мелкие, сферические или овоидные, расположены у полюсов ядра. Характерной чертой гладких миоцитов является наличие множества впячиваний (кавеол) плазмолеммы, содержащих ионы кальция.
38. Особенности строения сократительного и опорного аппарата гладкого миоцита. Актиновые и миозиновые филаменты. Механизм мышечного сокращения.
Гладкие миоциты: строение и функционирование
|
1. Мембранные системы гладких миоцитов
а) Гранулярная ЭПС. I. В гладких миоцитах часто хорошо выражена гранулярная ЭПС (3). Это связано с тем, что данные клетки, помимо сократительной функции, могут выполнять и другую – синтетическую. А именно: подобно фибробластам, синтезировать компоненты межклеточного вещества – протеогликаны, коллаген, эластин и пр.
II. Данная функция является очень важной и заметной, например, у гладких миоцитов в стенке разнообразных сосудов.
III. Не исключено, что в миоцитарных комплексах существует функциональная специализация миоцитов: одни выполняют преимущественно сократительную функцию, а другие – преимущественно синтетическую функцию.
б) Системы транспорта ионов Са2+.
I. В то же время гладкие миоциты не содержат тех специфических мембранных систем, которые характерны для поперечнополосатых мышечных тканей. Имеются в виду Т-трубочки и L-канальцы с терминальными цистернами.
II. Поэтому по-другому решается проблема повышения в клетке концентрации ионов Са2+ при возбуждении: эти ионы поступают в цитозоль не столько из эндоплазматического ретикулума, сколько из межклеточной среды.
A) В ходе этого транспорта ионов Са2+ плазмолемма образует многочисленные впячивания – кавеолы, которые превращаются в пузырьки.
B) Кроме того, в плазмолемме имеются Са2+-каналы, которые (наряду с Nа+-каналами) открываются лишь при возбуждении клетки или при действии на мембранные рецепторы определенных регуляторов.
2. Сократительный аппарат. Гладкие миоциты содержат тонкие миофиламенты и (в несобранном виде) компоненты толстых миофиламентов.
а) Тонкие (актиновые) миофиламенты состоят только из актина (т. е. не содержат тропонин и тропомиозин) и прикрепляются к т.н. плотным тельцам (аналогам телофрагмы), которые либо связаны с плазмолеммой, либо находятся в цитоплазме.
б) Толстые же (миозиновые) миофиламенты в состоянии покоя, видимо, диссоциированы на фрагменты или даже отдельные молекулы миозина и поэтому не имеют фиксированного положения.
Соответственно, в покое в клетках нет миофибрилл (отчего клетки не имеют поперечной исчерченности).
3. Плотные тельца – специфические компоненты цитоскелета гладкого миоцита. Они делятся на два вида: плотные пластинки плазмолеммы и плотные тельца цитоплазмы.
а) Плотные пластинки плазмолеммы – пучки тонких микрофиламентов (из т. н. немышечного актина), которые идут под плазмолеммой вдоль длинной оси клетки на некотором расстоянии друг от друга и формируют «ребристый» каркас миоцита.
Лишь в промежутках между пластинками плазмолемма способна образовывать кавеолы.
б) Плотные тельца цитоплазмы имеют овальную форму. Они связаны нитями немышечного актина в цепочки, которые тоже расположены вдоль длинной оси миоцита и зафиксированы, видимо, с помощью промежуточных филаментов, идущих от телец к плазмолемме и прочим структурам.
Несмотря на разное строение, плотные пластинки плазмолеммы и плотные тельца цитоплазмы содержат отчасти те же белки (α-актинин и пр.), что и телофрагма в поперечнополосатых мышечных тканях (п. 11.2.2.3). Поэтому подобно телофрагме плотные тельца и пластинки служат (как уже было сказано) местом фиксации тонких миофиламентов.
4. Процесс сокращения
а) Поступление ионов Са2+. Под влиянием нервного импульса из внешней среды в клетку тем или иным способом (с помощью кавеол или через Са2+-каналы) начинают поступать ионы Са2+.
Это происходит значительно медленней, чем выход Са2+ из цистерн в поперечнополосатых мышечных тканях. Поэтому сокращения гладкой мускулатуры развиваются не так быстро, как в тех тканях.
б) Фосфорилирование миозина. Еще одно отличие от тех же тканей состоит в том, что в гладких миоцитах ионы Са2+влияют на состояние не тонких, а толстых миофиламентов. Причем это происходит опосредованным способом, а именно: ионы Са2+, связавшись с белком кальмодулином, активируют миозинкиназу (более точно – киназу легких цепей миозина), которая фосфорилирует молекулы миозина.
В итоге миозин начинает объединяться в толстые миофиламенты, а последние – взаимодействовать с тонкими миофиламентами.
в) Взаимодействие миофиламентов. Толстые миофиламенты внедряются между тонкими – образуются временные миофибриллы.
Далее, как обычно, миофиламенты перемещаются навстречу друг другу (за счет образования и разрыва мостиков и гидролиза АТФ). В результате плотные тельца сближаются, что и означает сокращение миоцита.
В сокращенном состоянии гладкие миоциты могут пребывать достаточно долго без заметного утомления. Это объясняется тем, что часть миозиновых мостиков сохраняется и после дефосфорилирования миозина.
г) Выход из сокращения совершается тоже медленно. Его инициирует удаление ионов Са2+ из клетки Са2+-насосами.
После этого начинает преобладать активность миозинфосфатазы (точнее, фосфатазы легких цепей миозина). Происходит дефосфорилирование миозина. Но и далее, как уже было сказано, еще какое-то время могут сохраняться некоторые миозиновые мостики.
Тем не менее со временем толстые миофиламенты распадаются на фрагменты или даже на молекулы миозина. Клетка возвращается в расслабленное состояние.
| 39. Нервная ткань. Гистогенез. Производные нервной трубки (нейробласты, глиобласты), нервного гребня и нейральных плакод.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | Поиск по сайту:
|