|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Нервные волокнаОтростки нервных клеток, покрытые оболочками, называются нервными волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном, так как чаще всего (за исключением чувствительных нервов) в составе нервных волокон находятся именно аксоны. В центральной нервной системе оболочки отростков нейронов образуются отростками олигодендроглиоцитов, а в периферической — нейролеммоцитами Шванна. Безмиелиновые нервные волокна находятся преимущественно в составе автономной, или вегетативной, нервной системы. Нейролеммоциты оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи. В нервных волокнах внутренних органов, как правило, в таком тяже имеется не один, а несколько осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в соседнее. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. По мере погружения осевых цилиндров в тяж нейролеммоцитов оболочки последних прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану — мезаксон, на которой как бы подвешен осевой цилиндр. Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Они также состоят из осевого цилиндра, «одетого» оболочкой из нейролеммоцитов Шванна, но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее. Миелиновый слой оболочки такого волокна содержит значительное количество липидов, поэтому при обработке осмиевой кислотой он окрашивается в темно-коричневый цвет. В миелиновом слое периодически встречаются узкие светлые линии—насечки миелина, или насечки Шмидта — Лантермана. Через определенные интервалы (1—2 мм) видны участки волокна, лишенные миелинового слоя, — это т.н. узловатые перехваты, или перехваты Ранвье. В процессе миелинизации аксон погружается в желобок на поверхности нейролеммоцита. Края желобка смыкаются. При этом образуется двойная складка плазмолеммы нейролеммоцита — мезаксон. Мезаксон удлиняется, концентрически наслаивается (как бы накручивается) на осевой цилиндр и образует вокруг него плотную слоистую зону — миелиновый слой. Отсутствие миелинового слоя в области узловых перехватов объясняется тем, что в этом участке волокна кончается один нейролеммоцит и начинается другой. Осевой цилиндр в этом месте частично прикрыт интердигитирующими отростками нейролеммоцитов. Оболочка аксона (аксолемма) обладает в области перехвата значительной электронной плотностью. Отрезок волокна между смежными перехватами называется межузловым сегментом. Длина межузлового сегмента, так же как и толщина миелинового слоя, зависит от толщины осевого цилиндра. Насечка миелина (Шмидта—Лантермана) представляет собой участок миелинового слоя, где завитки мезаксона лежат неплотно друг к другу, образуя спиральный туннель, идущий снаружи внутрь и заполненный цитоплазмой нейролеммоцита, т.е. место расслоения миелина. Снаружи от нейролеммоцита располагается базальная мембрана. Миелиновые волокна центральной нервной системы не имеют насечек миелина, а нервные волокна не окружены базальными мембранами. 44. Механизм и скорость проведения нервного импульса по нервным волокнам (потенциал покоя, действия, реполяризация). Регенерация нервных волокон. Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1—2 м/с, тогда как толстые миелиновые — со скоростью 5—120 м/с. В безмиелиновом волокне волна деполяризации мембраны идет по всей аксолемме, не прерываясь, а в миелиновом возникает только в области перехватов. Таким образом, для миелиновых волокон характерно сальтаторное проведение возбуждения, т.е. прыжками. Между перехватами идет электрический ток, скорость которого выше, чем прохождение волны деполяризации по аксолемме. НЕРВНЫЙ ИМПУЛЬС - волна возбуждения, к-рая распространяется по нервному волокну и служит для передачи информации от периферич. рецепторных (чувствительных) окончаний к нервным центрам, внутри центр. нервной системы и от неё к исполнительным аппаратам - мышцам и железам. Прохождение Н. и. сопровождается переходными электрич. процессами, к-рые можно зарегистрировать как внеклеточными, так и внутриклеточными электродами. Генерацию, передачу и переработку Н. и. осуществляет нервная система. Осн. структурным элементом нервной системы высших организмов является нервная клетка, или нейрон, состоящий из тела клетки и многочисл. отростков - дендритов (рис. 1). Один из отростков у нериферич. нейронов имеет большую длину - это нервное волокно, или аксон, протяжённость к-рого ~ 1 м, а толщина от 0,5 до 30 мкм. Различают два класса нервных волокон: мякотные (миелинизированные) и безмякотные. У мякотных волокон имеется миелиновая оболочка, образованная спец. мембраной, к-рая подобно изоляции накручивается на аксон. Протяжённость участков сплошной миелиновой оболочки составляет от 200 мкм до 1 мм, они прерываются т. н. перехватами Ранвье шириной 1мкм. Миелиновая оболочка играет роль изоляции; нервное волокно на этих участках пассивно, электрически активна только мембрана в перехватах Ранвье. Безмякотные волокна не имеют изолир. участков; их структура однородна по всей длине, а мембрана обладает электрич. активностью по всей поверхности. Нервные волокна заканчиваются на телах или ден-дритах др. нервных клеток, но отделены от них промежутком шириной ~ 10 нм. Эта область контакта двух клеток наз. синапсом. Входящая в синапс мембрана аксона наз. пресинаптической, а соответствующая мембрана дендритов или мышцы - постсинаптической (см. Клеточные структуры). В нормальных условиях по нервному волокну постоянно бегут серии Н. и., возникающих на дендритах или теле клетки и распространяющихся по аксону в направлении от тела клетки (аксон может проводить Н. и. в обоих направлениях). Частота этих периодич. разрядов несёт информацию о силе вызвавшего их раздражения; напр., при умеренной активности частота ~ 50-100 импульсов/с. Существуют клетки, к-рые разряжаются с частотой ~ 1500 импульсов/с. Скорость распространения Н. и. u. зависит от типа нервного волокна и его диаметра d, u. ~ d 1/2. В тонких волокнах нервной системы человека u. ~ 1 м/с, а в толстых волокнах u. ~ 100-120 м/с. Каждый Н. и. возникает в результате раздражения тела нервной клетки или нервного волокна. Н. и. всегда имеет одни и те же характеристики (форму и скорость) независимо от силы раздражения, т. е. при подпороговом раздражении Н. и. не возникает совсем, а при надпороговым - имеет полную амплитуду. После возбуждения наступает рефракторный период, в течение к-рого возбудимость нервного волокна снижена. Различают абс. рефракторный период, когда волокно нельзя возбудить никакими раздражителями, и относит. рефракторный период, когда возбуждение возможно, но его порог оказывается выше нормы. Абс. рефракторный период ограничивает сверху частоту передачи Н. и. Нервное волокно обладает свойством аккомодации, т. е. привыкает к постоянно действующему раздражению, что выражается в постепенном повышении порога возбудимости. Это приводит к снижению частоты Н. и. и даже к их полному исчезновению. Если сила раздражения нарастает медленно, то возбуждения может не произойти даже после достижения порога. Вдоль нервного волокна Н. и. распространяется в виде волны электрич. потенциала. В синапсе происходит смена механизма распространения. Когда Н. и. достигает пресинаптич. окончания, в синаптич. щель выделяется активное хим. вещество - м е д и а т о р. Медиатор диффундирует через синаптич. щель и меняет проницаемость постсинаптич. мембраны, в результате чего на ней возникаетпотенциал, вновь генерирующий распространяющийся импульс. Так действует хим. синапс. Встречается также электрич. синапс, когда след. нейрон возбуждается электрически. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |