АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Развитие

Читайте также:
  1. S: Установите соответствие между типом общества и экономическим развитием данного общества.
  2. VII. Человеческое развитие и массаж
  3. Анализ реализации республиканской целевой программы «Развитие внутреннего и въездного туризма в Республике Бурятия на 2011-2016 годы»
  4. Ангионевротическая - первоначально развивается ангионевроз сосудов с ишемическим повреждением тканей отростка, а затем инфицирование и развитие воспаления.
  5. Артерии. Морфо-функциональная характеристика. Классификация, развитие, строение, функция артерий. Взаимосвязь структуры артерий и гемодинамических условий. Возрастные изменения.
  6. Белорусизация и развитие литературы и искусства.
  7. В-3. Циклическое развитие экономики. Причины, фазы.
  8. Взгляд на развитие психики В. С. Мухиной
  9. Вклад П.Друкера в развитие мировой управленческой мысли.
  10. Влияние восточных учений на развитие античной науки
  11. Влияние жизнестойкости на развитие личности в юношеском возрасте
  12. Внутриполитическое развитие и внешняя политика в годы реформ

Нейруляция (схема).

А — стадия нервной пластинки; Б - стадия нервного желобка; В - стадия нервной трубки.
1 - нервный желобок; 2 - нервный валик; 3 - кожная эктодерма; 4 - хорда; 5 - сомитная мезодерма; 6 - нервный гребень (ганглиозная пластинка); 7 - нервная трубка; 8 - мезенхима; 9 - эндодерма.

Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок.

Передний конец нервной пластинки расширяется, образуя позднее головной мозг. Латеральные края продолжают подниматься и растут медиально, пока не встретятся и не сольются по средней линии в нервную трубку, которая отделяется от лежащей над ней кожной эктодермы. Полость нервной трубки сохраняется у взрослых в виде системы желудочков головного мозга и центрального канала спинного мозга.

Часть клеток нервной пластинки не входит в состав ни нервной трубки, ни кожной эктодермы, а образует скопления по бокам от нервной трубки, которые сливаются в рыхлый тяж, располагающийся между нервной трубкой и кожной эктодермой, — это нервный гребень (или ганглиозная пластинка).

Из нервной трубки в дальнейшем формируются нейроны и макроглия центральной нервной системы. Нервный гребень дает начало нейронам чувствительных и автономных ганглиев, клеткам мягкой мозговой и паутинной оболочек мозга и некоторым видам глии: нейролеммоцитам (шванновским клеткам), клеткам-сателлитам ганглиев. Из нервного гребня развиваются также клетки мозгового вещества надпочечников, меланоциты кожи, часть клеток APUD-системы, сенсорные клетки каротидных телец.

В формировании ганглиев V, VII, IX и X пар черепных нервов принимают участие, кроме нервного гребня, также нейрогенные плакоды, представляющие собой утолщения эктодермы по бокам формирующейся нервной трубки в краниальном отделе зародыша.

Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных, или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны:

· внутренняя - вентрикулярная (или эпендимная) зона,

· вокруг нее – субвентрикулярная зона,

· затем промежуточная (или плащевая, или же мантийная, зона) и, наконец,

· наружная - краевая (или маргинальная) зона нервной трубки.

Вентрикулярная (эпендимная), внутренняя, зона состоит из делящихся клеток цилиндрической формы. Вентрикулярные (или матричные) клетки являются предшественниками нейронов и клеток макроглии.

Субвентрикулярная зона состоит из клеток, сохраняющих высокую пролиферативную активность и являющихся потомками матричных клеток.

Промежуточная (плащевая, или мантийная) зона состоит из клеток, переместившихся из вентрикулярной и субвентрикулярной зон — нейробластов и глиобластов. Нейробласты утрачивают способность к делению и в дальнейшем дифференцируются в нейроны. Глиобласты продолжают делиться и дают начало астроцитам и олигодендроцитам. Способность к делению не утрачивают полностью и зрелые глиоциты. Новообразование нейронов прекращается в раннем постнатальном периоде.

 

Поскольку число нейронов в головном мозге составляет примерно 1 триллион, очевидно, в среднем в течение всего пренатального периода в 1 мин формируется 2,5 миллиона нейронов.

Из клеток плащевого слоя образуются серое вещество спинного и часть серого вещества головного мозга.

Маргинальная зона (или краевая вуаль) формируется из врастающих в нее аксонов нейробластов и макроглии и дает начало белому веществу. В некоторых областях головного мозга клетки плащевого слоя мигрируют дальше, образуя кортикальные пластинки — скопления клеток, из которых формируется кора большого мозга и мозжечка (т.е. серое вещество).

По мере дифференцировки нейробласта, изменяется субмикроскопическое строение его ядра и цитоплазмы.

Специфическим признаком начавшейся специализации нервных клеток следует считать появление в их цитоплазме тонких фибрилл — пучков нейрофиламентов и микротрубочек. Количество нейрофиламентов, содержащих белок — нейрофиламентный триплет, в процессе специализации увеличивается. Тело нейробласта постепенно приобретает грушевидную форму, а от его заостренного конца начинает развиваться отросток — аксон. Позднее дифференцируются другие отростки — дендриты. Нейробласты превращаются в зрелые нервные клетки — нейроны. Между нейронами устанавливаются контакты (синапсы).

В процессе дифференцировки нейронов из нейробластов различают до-медиаторный и медиаторный периоды. Для домедиаторного периода характерно постепенное развитие в теле нейробласта органелл синтеза — свободных рибосом, а затем эндоплазматической сети. В медиаторном периоде у юных нейронов появляются первые пузырьки, содержащие нейромедиатор, а в дифференцирующихся и зрелых нейронах отмечаются: значительное развитие органелл синтеза и секреции, накопление медиаторов и поступление их в аксон, образование синапсов.

Несмотря на то, что формирование нервной системы завершается только в первые годы после рождения, известная пластичность центральной нервной системы сохраняется до старости. Эта пластичность может выражаться в появлении новых терминалей и новых синаптических связей. Нейроны центральной нервной системы млекопитающих способны формировать новые ветви и новые синапсы. Пластичность проявляется в наибольшей степени в первые годы после рождения, но частично сохраняется и у взрослых — при изменении уровней гормонов, обучении новым навыкам, травме и других воздействиях. Хотя нейроны постоянны, их синаптические связи могут модифицироваться в течение всей жизни, что может выражаться, в частности, в увеличении или уменьшении их числа. Пластичность при малых повреждениях мозга проявляется в частичном восстановлении функций.

В популяции нейронов, начиная с ранних стадий развития нервной системы и в течение всего онтогенеза, имеет место массовая гибель клеток. Эта запрограммированная физиологическая гибель клеток наблюдается как в центральной, так и в периферической нервной системе. У человека ежегодно погибает около 10 млн нервных клеток.

40.Морфологическая и функциональная классификация нейронов. Морфофункциональные зоны нейрона (классификация по Бодиану). Органеллы общего и специального значения.

Существует множество классификаций нервных клеток, так как нейроны отличаются по размерам и форме перикариона, числу отростков, их синаптическим связям, характеру ветвления дендритов, электрофизиологическим характеристикам, химии нейромедиаторов, позиции в нейронных сетях и множеству других характеристик. В зависимости от класса выполняемой функции выделяют афферентные (чувствительные, сенсорные), эфферентные (двигательные, моторные) и вставочные нервные клетки (ассоциативные нейроны, или интернейроны).

Афферентные нейроны проводят возбуждение от рецепторов периферических органов в структуры ЦНС.

Эфферентные нейроны осуществляют передачу сигналов от ЦНС к органам-эффекторам (мышцам и железам).

Ассоциативные нейроны проводят возбуждение между нейронами.

Морфологическая классификация. По количеству отростков нейроны разделяют на псевдоуниполярные, биполярные и мультиполярные.

Псевдоуниполярные нейроны имеют один короткий отросток, который разделяется на некотором расстоянии от сомы на два длинных — дендрит и аксон. К псевдоуниполярным относятся нейроны сенсорных ганглиев спинного мозга.

Биполярные нейроны имеют один дендрит и один аксон. Этот вид нейронов встречается в периферическом отделе зрительного, обонятельного и слухового анализаторов.

Мультиполярные нейроны имеют один аксон и несколько дендритов, это наиболее распространённый вид нейронов. К ним относятся мотонейроны спинного мозга.

Исходя из характера электрогенеза в различных зонах нервных клеток (рецептивная и интегративная зоны, начальный сегмент аксона, аксон, терминали аксона), предложена универсальная классификация (рис. 5–2, см. также рис. 5–1). Эта классификация учитывает направление (вход и выход) сигналов в пределах одной нервной клетки, но находящейся в составе нейронных сетей или цепочек, а также характер мембранного электрогенеза (изменения МП в рецептивной и пресинаптической зонах и передача ПД по аксону).

Рис. 5–2. Универсальная классификация частей различных типов нейронов [11]. Дендриты — рецепторная зона — возбуждающий или тормозящий вход. Перикарион с дендритами — интегративная зона. Аксон — проводящая возбуждение (ПД) часть нейрона, его концевые разветвления образуют синапсы (выход) с соседними клетками. А–Г — афферентные (чувствительные) нейроны; Д — мотонейрон; Е — интернейроны.

Специфическими органеллами нейрона являются нейро-филаменты и нейротубулы+ -тигровидное вещество, или вещество Ниссля, которое представляет собой участки цитоплазмы с большим содержанием рибосом..

Нейрофиламенты представляют собой промежуточные филаменты диаметром 8-10 нм, образованные фибриллярными белками (белками так называемого нейрофибриллярного триплета, или нейрофибрилляр-ными кислыми белками). Основными функциями данной органеллы являются опорно-каркасная, обеспечение стабильной формы нейрона и нервной системы в целом. Аналогичную роль играют тонкие микрофи-ламенты (поперечный диаметр 6-8 нм), содержащие белки актины. В отличие от подобных микрофиламентов в других тканях и клетках, они не соединяются с микромиозинами, что делает невозможным активные сократительные функции в зрелых нервных клетках.

Нейротубулы по основным принципам своего строения практически не отличаются от микротрубочек. Они, как и все микротрубочки, имеют поперечный диаметр около 24 нм и на поперечном разрезе сформированы 13 молекулами глобулярных белков тубулинов. Как и везде, они поляризованы. В отличие от большинства микротрубочек в других клетках, нейротубулы весьма стабильны. Тубулин в них находится в метилированной форме и нередко кэпирован (концы нейроту-бул прикрыты белковыми молекулами, функция которых заключается в стабилизации нейротубул и предохранении их от разрушения). В нервной ткани они выполняют очень важную, если не сказать, уникальную роль. Они несут опорно-каркасную функцию, обеспечивают процессы циклоза, направляя органеллы и включения. Полярность ор-ганеллы, в которой имеется отрицательно и положительно заряженный конец, позволяет контролировать диффузионно-транспортные потоки в аксоне (так называемый быстрый и медленный аксоток). Кроме того, значительное число нейрофизиологов приписывает микротрубочкам роль хранилища поступающей в мозг информации.

41.Транспортные процессы в нейроне. Дендритный и аксонный транспорт Роль плазмолеммы нейронов в рецепции, генерации и проведении нервного импульса.

Аксональный (точнее аксоплазматический) транспорт — это перемещение веществ от тела в отростки и от отростков в тело нейрона. Он направляется нейротубулами, а в транспорте участвуют белки — кинезин и динеин. Транспорт веществ от тела клетки в отростки называется прямым, или антероградным, транспорт веществ от отростков к телу — обратным, или ретроградным. Аксональный транспорт представлен двумя главными компонентами: быстрым компонентом (400—2000 мм в сутки) и медленным (1—2 мм в сутки). Обе транспортные системы присутствуют как в аксонах, так и в дендритах.

Антероградная быстрая система проводит мембранные структуры, включая компоненты мембраны, митохондрии, пузырьки, содержащие пептиды, предшественники нейромедиаторов и другие белки. Ретроградная быстрая система проводит использованные материалы для деградации в лизосомах, распределения и рециркуляции и, возможно, факторы роста нервов.

Нейротубулы — органеллы, ответственные за быстрый транспорт, который называется также нейротубулозависимым. Каждая нейротубула содержит несколько путей, вдоль которых движутся различные частички. АТФ и ионы Са2+ обеспечивают эти движения. На одной микротубуле пузырьки могут обгонять другие пузырьки, движущиеся в том же направлении. Два пузырька могут двигаться в противоположных направлениях одновременно по различным путям одной нейротубулы.

Медленный транспорт — это антероградная система, проводящая белки и другие вещества для обновления и поддержания аксоплазмы зрелых нейронов и обеспечения аксоплазмой роста аксонов и дендритов при развитии и регенерации.

Во ещё раз по нормальному

Аксональный транспорт – это непрерывная циркуляция аксоплазмы от перикариона (антеградный ток) и назад к нему (ретроградный ток).

Антеградный ток: а) медленный поток: 0,1 – 3 мм/сутки, который несёт новосинтезированную аксоплазму к окончанию аксона (глиальная оболочка выполняет при это роль перистальтики); б) быстрый поток: 100-500 мм/сутки, а в нейросекреторных клетках гипоталамуса – 2800мм/сутки. Этот поток несёт вещества для синаптической функции: ферменты, гликопротеиды, фосфолипиды, митохондрии.

Ретроградный ток происходит от дистальной части аксона в сторону перикариона и осуществляется со скоростью быстрого потока. Это перемешение белков и других веществ, захваченных нервными окончаниями.

Дендритный транспорт осуществляет перенос белков и ферментов (ацетилхолинестераза) от тела к дендритам со скоростью 3мм/сутки (медленный поток).

Механизм транспорта. Транспорт обеспечивается микротрубочками и связанными с ними белками кинезинами и динеинами и происходит с затратой АТФ. Кинезин отвечает за антеградный транспорт, а динеин – за ретроградный транспорт, который происходит по поверхности микротрубочек, а не внутри них.

Трансверсальный транспорт – это передача кислорода, энергетических субстратов,удаление продуктов метаболизма через местное кровеносное русло в области перехватов Ранвье. После прекращения кровоснабжения нервное волокно теряет способность к проведению возбуждения.

Плазмолемма нейрона является возбудимой мембраной, т.е. обладает способностью генерировать и проводить импульс. Ее интегральными белками являются белки, функционирующие как ионно-избирательные каналы, и рецепторные белки, вызывающие реакции нейронов на специфические стимулы. В нейроне мембранный потенциал покоя равен —60 —70 мВ. Потенциал покоя создается за счет выведения Na+ из клетки. Большинство Na+- и К+-каналов при этом закрыты. Переход каналов из закрытого состояния в открытое регулируется мембранным потенциалом.

В результате поступления возбуждающего импульса на плазмолемме клетки происходит частичная деполяризация. Когда она достигает критического (порогового) уровня, натриевые каналы открываются, позволяя ионам Na+ войти в клетку. Деполяризация усиливается, и при этом открывается еще больше натриевых каналов. Калиевые каналы также открываются, но медленнее и на более продолжительный срок, что позволяет К+ выйти из клетки и восстановить потенциал до прежнего уровня. Через 1—2 мс (т.н. рефрактерный период) каналы возвращаются в нормальное состояние, и мембрана может вновь отвечать на стимулы.

Итак, распространение потенциала действия обусловлено вхождением в нейрон ионов Na+, которые могут деполяризовать соседний участок плазмолеммы, что в свою очередь создает потенциал действия на новом месте.

При окрашивании нервной ткани анилиновыми красителями в цитоплазме нейронов выявляется хроматофильная субстанция в виде базофильных глыбок и зерен различных размеров и форм (другие названия хроматофильной субстанции - тигроид, тельца Ниссля). Базофильные глыбки локализуются в перикарионах и дендритах нейронов, но никогда не обнаруживаются в аксонах и их конусовидных основаниях — аксональных холмиках. Базофилия глыбок объясняется высоким содержанием рибонуклеопротеидов. Каждая глыбка хроматофильной субстанции состоит из цистерн гранулярной эндоплазматической сети, свободных рибосом и полисом. Для поддержания целостности нейронов и выполнения ими функций нейронам требуется огромное количество белков. Для аксонов, не имеющих органелл белкового синтеза, характерен постоянный ток цитоплазмы от перикариона к терминалям со скоростью 1—3 мм в сутки.

42.Нейроглия. Морфофункциональная характеристика. Локализация. Строение. Функция.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)