|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Степенные ряды
Определение. Степенным рядом называется функциональный ряд
члены которого есть произведения постоянных Постоянные а0, а1, а2, а3, …, аn, … называются коэффициентами степенного ряда. В частном случае при а = 0 имеют степенной ряд вида
Основное свойство степенных рядов сформулировано в теореме Абеля. Если степенной ряд (8) сходится при х = х0, то он сходится и притом абсолютно при всяком значении х, удовлетворяющем условию
Одним из следствий теоремы Абеля является существование для всякого степенного ряда интервала сходимости, симметричного относительно х = а [для ряда (8)]. Обозначим через число R половину длины интервала сходимости – радиус сходимости. Тогда интервал сходимости для ряда (8) запишется в виде
а при а = 0
В частных случаях радиус сходимости ряда R может оказаться равным нулю или бесконечности. Если R = 0, это означает, что область сходимости состоит из одной точки х = а, другими словами, ряд расходится для всех значений х, кроме одного. Если же R = ¥, то ряд сходится на всей числовой оси, т. е. ряд сходится при всех значениях х. На концах интервала сходимости в точках х = а ± R различные степенные ряды ведут себя по-разному: одни сходятся абсолютно на обоих концах, другие – либо условно сходятся на обоих концах, либо на одном сходятся условно, а на другом расходятся; существуют ряды, которые расходятся на обоих концах. Для определения интервала и радиуса сходимости степенного ряда можно использовать следующие способы. 1. Если среди коэффициентов ряда а0, а1, а2, а3, …, аn, … нет равных нулю, т. е. ряд содержит все целые положительные степени разности х – а, то радиус сходимости находится по формуле
при условии, что этот предел, конечный или бесконечный, существует (это условие должно выполняться и для нижеприведенных способов). 2. Если степенной ряд имеет вид
где р– некоторое определенное целое положительное число, то радиус сходимости данного ряда
3. Во всех случаях интервал сходимости степенного ряда можно находить, непосредственно применяя известные признаки Даламбера или Коши к ряду, составленному из абсолютных величин членов исходного ряда. Запишем степенной ряд в виде
используя следующие обозначения:
Теорема 1. Если ряд (8) сходится на отрезке [a; b], то его можно почленно проинтегрировать на этом отрезке:
Теорема 2. Ряд (8) можно почленно продифференцировать в каждой точке x его интервала сходимости. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |