|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Неравные числа равныСОФИЗМЫ
Понятие софизма.
Софизм - (от греческого sophisma – уловка, ухищрение, выдумка, головоломка), умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям. Каким бы ни был софизм, он всегда содержит одну или несколько замаскированных ошибок. Что же такое математический софизм? Математический софизм - удивительное утверждение, в доказательстве которого кроются незаметные, а подчас и довольно тонкие ошибки. История математики полна неожиданных и интересных софизмов, разрешение которых порой служило толчком к новым открытиям. Математические софизмы приучают внимательно и настороженно продвигаться вперед, тщательно следить за точностью формулировок, правильностью записи чертежей, за законностью математических операций. Очень часто понимание ошибок в софизме ведет к пониманию математики в целом, помогает развивать логику и навыки правильного мышления. Если нашел ошибку в софизме, значит, ты ее осознал, а осознание ошибки предупреждает от ее повторения в дальнейших математических рассуждениях. Софизмы не приносят пользы, если их не понимать. Что касается типичных ошибок в софизмах, то они таковы: запрещенные действия, пренебрежение условиями теорем, формул и правил, ошибочный чертеж, опора на ошибочные умозаключения. Нередко, ошибки, допущенные в софизме, настолько умело скрыты, что даже опытный математик не сразу их выявит. Именно в этом и проявляется связь математики и философии в софизмах. На самом деле, софизм- гибрид не только математики и философии, но и логики с риторикой. Основные создатели софизмов – древнегреческие ученые-философы, но тем не менее, они создавали математические софизмы, основываясь на элементарных аксиомах, что еще раз подтверждает связь математики и философии в софизмах. Кроме того, очень важно правильно преподнести софизм, так, чтобы докладчику поверили, а значит, необходимо владеть даром красноречия и убеждения. Группа древнегреческих ученых, начавшая заниматься софизмами как отдельным математическим явлением, назвала себя софистами. Об этом подробнее в следующем разделе.
Экскурс в историю. Софистами называли группу древнегреческих философов 4-5 века до н.э., достигших большого искусства в логике. В период падения нравов древнегреческого общества (5 век) появляются так называемые учителя красноречия, которые целью своей деятельности считали и называли приобретение и распространения мудрости, вследствие чего они именовали себя софистами. Наиболее известна деятельность старших софистов, к которым относят Протагора из Абдеры, Горгия из Леонтип, Гиппия из Элиды и Продика из Кеоса. Но суть деятельности софистов много больше, чем простое обучение искусству красноречия. Они обучали и просвещали древнегреческий народ, старались способствовать достижению нравственности, присутствия духа, способности ума ориентироваться во всяком деле. Но софисты не были учеными. Умение, которое должно было быть достигнуто с их помощью, заключалось в том, что человек учился иметь в виду многообразные точки зрения. Основным направление деятельности софистов стала социально-антропологическая проблема. Они рассматривали самопознание человека, учили сомневаться, но все же, это очень глубокие философские проблемы, которые стали основой для мыслителей Европейской культуры. Что касается самих софизмов, то они стали как бы дополнением к софистике в целом, если рассматривать ее как истинно философское понятие. Исторически сложилось, что с понятием софизма связывают идею о намеренной фальсификации, руководствуясь признанием Протагора, что задача софиста - представить наихудший аргумент как наилучший путем хитроумных уловок в речи, в рассуждении, заботясь не об истине, а об успехе в споре или о практической выгоде. Там не менее, в Греции софистами называли и простых ораторов. Известнейший ученый и философ Сократ по началу был софистом, активно участвовал в спорах и обсуждениях софистов, но вскоре стал критиковать учение софистов и софистику в целом. Такому же примеру последовали и его ученики (Ксенофонт и Платон). Философия Сократа была основана на том, что мудрость приобретается с общением, в процессе беседы. Учение Сократа было устным. Кроме того, Сократа и по сей день считают самым мудрым философом. Что касается самих софизмов, то, пожалуй, самым популярным на тот момент в Древней Греции был софизм Евбулида: «Что ты не терял, ты имеешь. Рога ты не терял. Значит у тебя рога». Единственная неточность, которую возможно было допустить, то это - двусмысленность высказывания. Данная постановка фразы является нелогичной, но логика возникла намного позже, благодаря Аристотелю, поэтому, если бы фраза строилась так: «Все, что ты не терял...», то вывод стал бы логически безупречным.
«Математические софизмы»
Разбор и решение любого рода математических задач, а в особенности нестандартных, помогает развивать смекалку и логику. Математические софизмы относятся именно к таким задачам. В этом разделе работы я рассмотрю три типа математических софизмов: алгебраические, геометрические и арифметические.
Геометрические софизмы.
1. «Через точку на прямую можно опустить два перпендикуляра» Возьмем треугольник АВС. На сторонах АВ и ВС этого треугольника, как на диаметрах, построим полуокружности. Пусть эти полуокружности пересекаются со стороной АС в точках Е и Д. Соединим точки Е и Д прямыми с точкой В. Угол АЕВ прямой, как вписанный, опирающийся на диаметр; угол ВДС также прямой. Следовательно, ВЕ перпендикулярна АС и ВД перпендикулярна АС. Через точку В проходят два перпендикуляра к прямой АС. Где ошибка??? Рассуждения, о том, что из точки на прямой можно опустить два перпендикуляра, опирались на ошибочный чертеж. В действительности полуокружности пересекаются со стороной АС в одной точке, т.е. ВЕ совпадает с ВD. Значит, из одной точки на прямой нельзя опустить два перпендикуляра.
2. «Спичка вдвое длиннее телеграфного столба» Пусть а дм - длина спички и b дм - длина столба. Разность между b и a обозначим через c. Имеем Где ошибка??? В выражении b(b-a-c)= -c(b-a-c) производится деление на (b-a-c), а этого делать нельзя, так как b-a-c=0.Значит, спичка не может быть вдвое длиннее телеграфного столба. 3. Катет равен гипотенузе Угол С равен 90о, ВД - биссектриса угла СВА, СК = КА, ОК перпендикулярна СА, О - точка пересечения прямых ОК и ВД, ОМ перпендикулярна АВ, ОL перпендикулярна ВС. Имеем: треугольник LВО равен треугольнику МВО, ВL = ВМ, ОМ = ОL = СК = КА, треугольник КОА равен треугольнику ОМА (ОА - общая сторона, КА = ОМ, угол ОКА и угол ОМА - прямые), угол ОАК = углу МОА, ОК = МА = СL, ВА = ВМ + МА, ВС = ВL + LС, но ВМ = ВL, МА = СL, и потому ВА = ВС. Где ошибка??? Рассуждения, о том, что катет равен гипотенузе, опирались на ошибочный чертеж. Точка пересечения прямой, определяемой биссектрисой ВD и серединного перпендикуляра к катету АС, находится вне треугольника АВС. 4. Все треугольники равносторонние Рассмотрим произвольный треугольник ABC. Проведем биссектрису угла B и серединный перпендикуляр к стороне AC; точку их пересечения назовем O. Опустим из нее перпендикуляры EO и OF на стороны AB и BC соответственно. Т.к. DO одновременно и высота и медиана треугольника AOC, то он равнобедренный и AO = OC. Из этого следует, что все треугольники на свете - равносторонние. Где ошибка??? Арифметические софизмы.
Неравные числа равны Возьмем два неравных между собой произвольных числа а и b. Пусть их разность равна с, т. е. а-Ь = с. Умножив обе части этого равенства на а-b, получим (а-b)2 = = c(a-b), a раскрыв скобки, придем к равенству a2-2ab + b2 = = ca-cb, из которого следует равенство а2 - аb - ас = аb -b2 -bc. Вынося общий множитель а, слева и общий множитель b справа за скобки, получим а(а-b-с) = b(а-b-с). (1) Разделив последнее равенство на (а-Ь-с), получаем, что a=b, значит, два неравных между собой произвольных числа равны.
2.Единица равна нулю Возьмем уравнение х-а = 0. (1) Разделив обе его части на х-а, получим откуда сразу же получаем требуемое равенство 1=0.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |