АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Действия с комплексными числами

Читайте также:
  1. I .Характер действия лекарственных веществ 25 мин.
  2. I. Назначение, классификация, устройство и принцип действия машины.
  3. V. Ориентировочная основа действия
  4. А) одна из форм социального взаимодействия, отличающаяся его длительностью, устойчивостью, системностью и самовозобновляемостью, широтой социальных связей
  5. Авидон И. Ю., Гончукова О. П. Тренинги взаимодействия в конфликте. Материалы для подготовки и проведения. 2008, СПб, Речь, 192 с. (артикул 6058)
  6. Адм-ый и досудебный порядок обжалования актов действия бездействия налогов органов
  7. Акты применения норм права: понятие, классификация, эффектив-ность действия. Соотношение нормативно-правовых и правоприменительных актов.
  8. Алгоритм действия при гигиенической ванне.
  9. Алгоритм действия при ежедневной ванне.
  10. Алгоритм действия при оксигенотерапии.
  11. Алгоритм действия при подготовке матери и ребёнка к кормлению грудью.
  12. Антропогенные воздействия на гидросферу и их экологические последствия. Методы защиты гидросферы.

Основные действия с комплексными числами вытекают из действий с многочленами.

1) Сложение и вычитание.

2) Умножение.

В тригонометрической форме:

,

С случае комплексно – сопряженных чисел:

3) Деление.

В тригонометрической форме:

4) Возведение в степень.

Из операции умножения комплексных чисел следует, что

В общем случае получим:

,

где n – целое положительное число.

Это выражение называется формулой Муавра.

(Абрахам де Муавр (1667 – 1754) – английский математик)

Формулу Муавра можно использовать для нахождения тригонометрических функций двойного, тройного и т.д. углов.

Пример. Найти формулы sin2j и cos2j.

Рассмотрим некоторое комплексное число

Тогда с одной стороны .

По формуле Муавра:

Приравнивая, получим Т.к. два комплексных числа равны, если равны их действительные и мнимые части, то

Получили известные формулы двойного угла.

5) Извлечение корня из комплексного числа.

Возводя в степень, получим:

Отсюда: Таким образом, корень n – ой степени из комплексного числа имеет n различных значений.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)