АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Показательная форма комплексного числа

Читайте также:
  1. C.) При кодировании текстовой информации в кодах ASCII двоичный код каждого символа в памяти ПК занимает
  2. g) процесс управления информацией.
  3. I Курс I I семестр (полная форма обучения)
  4. II. Формальная логика как первая система методов философии.
  5. IV. Информационный блок.
  6. IV. УЧЕБНО-МЕТОДИЧЕСКОЕ, ИНФОРМАЦИОННОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ
  7. V. Завершите предложения, используя информацию из текста.
  8. V. Завершите предложения, используя информацию из текста.
  9. V. Завершите предложения, используя информацию из текста.
  10. V. Завершите предложения, используя информацию из текста.
  11. V. Операции в пользу мира в информационный век
  12. А не интенсивность, которая выясняется только спустя некоторое время, после получения информации о последствиях.

Рассмотрим показательную функцию

Можно показать, что функция w может быть записана в виде:

Данное равенство называется уравнением Эйлера. Вывод этого уравнения будет рассмотрен позднее. (См.).

Для комплексных чисел будут справедливы следующие свойства:

1)

2)

3) где m – целое число.

Если в уравнении Эйлера показатель степени принять за чисто мнимое число (х=0), то получаем:

Для комплексно – сопряженного числа получаем:

Из этих двух уравнений получаем:

Этими формулами пользуются для нахождения значений степеней тригонометрических функций через функции кратных углов.

Если представить комплексное число в тригонометрической форме:

и воспользуемся формулой Эйлера:

Полученное равенство и есть показательная форма комплексного числа.

38. Разложение многочлена на множители.

Определение. Функция вида f(x) называется целой рациональной функцией от х.

Теорема Безу. (Этьенн Безу (1730 – 1783) – французский математик)

При делении многочлена f(x) на разность x – a получается остаток, равный f(a).

Доказательство. При делении многочлена f(x) на разность x – a частным будет многочлен f1(x) степенина единицу меньшей, чем f(x), а остатком – постоянное число R.

Переходя к пределу при х ® a, получаем f(a) = R.

Следствие. Если, а – корень многочлена, т.е. f(a) = 0, то многочлен f(x) делится на (х – а) без остатка.

Определение. Если уравнение имеет вид Р(х) = 0, где Р(х) – многочлен степени n, то это уравнение называется алгебраическим уравнением степени n.

Теорема. (Основная теорема алгебры) Всякая целая рациональная функция f(x) имеет, по крайней мере, один корень, действительный или комплексный.

Теорема. Всякий многочлен n – ой степени разлагается на n линейных множителей вида (x – a) и множитель, равный коэффициенту при xn.

Теорема. Если два многочлена тождественно равны друг другу, то коэффициенты одного многочлена равны соответствующим коэффициентам другого.

Если среди корней многочлена встречаются кратные корни, то разложение на множители имеет вид:

ki - кратность соответствующего корня.

Отсюда следует, что любой многочлен n – ой степени имеет ровно n корней (действительных или комплексных).

Это свойство имеет большое значение для решения алгебраических уравнений, дифференциальных уравнений и играет важную роль в анализе функций.

Рассмотрим несколько примеров действий с комплексными числами.

Пример. Даны два комплексных числа . Требуется а) найти значение выражения в алгебраической форме, б) для числа найти тригонометрическую форму, найти z20, найти корни уравнения

a) Очевидно, справедливо следующее преобразование:

Далее производим деление двух комплексных чисел:

Получаем значение заданного выражения: 16(- i)4 = 16 i 4 =16.

б) Число представим в виде , где

Тогда .

ля нахождения воспльзуемся формулой Муавра.

Если , то


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)