|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Числовая последовательность
Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность x1, х2, …, хn = {xn} Общий элемент последовательности является функцией от n. xn = f(n) Таким образом последовательность может рассматриваться как функция.Задать последовательность можно различными способами – главное, чтобы был указан способ получения любого члена последовательности. Пример. {xn} = {(-1)n} или {xn} = -1; 1; -1; 1; … {xn} = {sinpn/2} или {xn} = 1; 0; 1; 0; … Для последовательностей можно определить следующие операции: 1. Умножение последовательности на число m: m{xn} = {mxn}, т.е. mx1, mx2, … 2. Сложение (вычитание) последовательностей: {xn} ± {yn} = {xn ± yn}. 3. Произведение последовательностей: {xn}×{yn} = {xn×yn}. 4. Частное последовательностей: при {yn} ¹ 0. Ограниченные и неограниченные последовательности. Определение. Последовательность {xn} называется ограниченной, если существует такое число М>0, что для любого n верно неравенство: т.е. все члены последовательности принадлежат промежутку (-М; M). Определение. Последовательность {xn}называется ограниченной сверху, если для любого n существует такое число М, что xn £ M. Определение. Последовательность {xn}называется ограниченной снизу, если для любого n существует такое число М, что xn ³ M Пример. {xn} = n – ограничена снизу {1, 2, 3, … }. Определение. Число а называется пределом последовательности {xn}, если для любого положительного e>0 существует такой номер N, что для всех n > N выполняется условие: Это записывается: lim xn = a. В этом случае говорят, что последовательность {xn} сходится к а при n®¥. Свойство: Если отбросить какое- либо число членов последовательности, то получаются новые последовательности, при этом если сходится одна из них, то сходится и другая. Теорема. Последовательность не может иметь более одного предела. Доказательство. Предположим, что последовательность {xn}имеет два предела a и b, не равные друг другу. xn ® a; xn ® b; a ¹ b. Тогда по определению существует такое число e >0, что Запишемвыражение: А т.к. e- любое число, то , т.е. a = b. Теорема доказана. Теорема. Если xn ® a, то . Доказательство. Из xn ® a следует, что . В то же время: , т.е. , т.е. . Теорема доказана. Теорема. Если xn ® a, то последовательность {xn} ограничена. Следует отметить, что обратное утверждение неверно, т.е. из ограниченности последовательности не следует ее сходимость. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |