Формула Ньютона–Лейбница вычисления определенного интеграла
Пусть в интеграле нижний предел а = const, а верхний предел b изменяется. Очевидно, что если изменяется верхний предел, то изменяется и значение интеграла.
Обозначим = Ф(х). Найдем производную функции Ф(х) по переменному верхнему пределу х.
Аналогичную теорему можно доказать для случая переменного нижнего предела.
Теорема: Для всякой функции f(x), непрерывной на отрезке [a, b], существует на этом отрезке первообразная, а значит, существует неопределенный интеграл.
Теорема: (Теорема Ньютона – Лейбница)
Если функция F(x) – какая- либо первообразная от непрерывной функции f(x), то
это выражение известно под названием формулы Ньютона – Лейбница.
Доказательство: Пусть F(x) – первообразная функции f(x). Тогда в соответствии с приведенной выше теоремой, функция - первообразная функция от f(x). Но т.к. функция может иметь бесконечно много первообразных, которые будут отличаться друг от друга только на какое – то постоянное число С, то
при соответствующем выборе С это равенство справедливо для любого х, т.е. при х = а:
Тогда .
А при х = b:
Заменив переменную t на переменную х, получаем формулу Ньютона – Лейбница:
Теорема доказана.
Иногда применяют обозначение F(b) – F(a) = F(x) .
Формула Ньютона – Лейбница представляет собой общий подход к нахождению определенных интегралов. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | Поиск по сайту:
|