АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Производная функции, ее геометрический и физический смысл

Читайте также:
  1. Бухгалтерский учет его функции, задачи и принципы.
  2. Вопрос №38. Понятие туристского маркетинга: цели, функции, концепции
  3. Геометрический порядок
  4. Геометрический расчет
  5. Иммунная система и ее функции, виды иммунитета.
  6. Кровь как ткань. Гемограмма. Эритроциты, строение, химический состав, функции, продолжительность жизни. Ретикулоциты.
  7. Матка. Яйцеводы, влагалище. Строение, функции, развитие. Циклические изменения органов женской половой системы. Их гормональная регуляция. Возрастные изменения.
  8. Непрерывность функции, точки разрыва.
  9. Нервная ткань. Морфо-функциональная характеристика. Источники развития. Нейроциты: функции, строение, морфологическая и функциональная характеристика.
  10. Основные функции, права и обязанности саморегулируемой аудиторской организации
  11. Политическая элита: определение, функции, типология.
  12. Понятие МТО: функции, формы

Определение. Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если он существует.

Пусть f(x) определена на некотором промежутке (a, b). Тогда тангенс угла наклона секущей МР к графику функции.

,

где a - угол наклона касательной к графику функции f(x) в точке (x0, f(x0)).

Угол между кривыми может быть определен как угол между касательными, проведенными к этим кривым в какой- либо точке.

Уравнение касательной к кривой:

Уравнение нормали к кривой: .

Фактически производная функции показывает как бы скорость изменения функции, как изменяется функция при изменении переменной.

Физический смысл производной функции f(t), где t- время, а f(t)- закон движения (изменения координат) – мгновенная скорость движения.

Соответственно, вторая производная функции- скорость изменения скорости, т.е. ускорение.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)