|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Разложение правильной рациональной дроби на простейшие дроби. Интегрирование рациональньных дробейДля того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби Теорема: Если где Ai, Bi, Mi, Ni, Ri, Si – некоторые постоянные величины. При интегрировании рациональных дробей прибегают к разложению исходной дроби на элементарные. Для нахождения величин Ai, Bi, Mi, Ni, Ri, Si применяют так называемый метод неопределенных коэффициентов, суть которого состоит в том, что для того, чтобы два многочлена были тождественно равны, необходимо и достаточно, чтобы были равны коэффициенты при одинаковых степенях х. Применение этого метода рассмотрим на конкретном примере. 41. Интегрирование тригонометрических функций. Сведение интегралов т тригонометрических функций к интегралам от рациональных функций. Интегралов от тригонометрических функций может быть бесконечно много. Большинство из этих интегралов вообще нельзя вычислить аналитически, поэтому рассмотрим некоторые главнейшие типы функций, которые могут быть проинтегрированы всегда. Интеграл вида Здесь R – обозначение некоторой рациональной функции от переменных sinx и cosx. Интегралы этого вида вычисляются с помощью подстановки
Тогда Таким образом: Описанное выше преобразование называется универсальной тригонометрической подстановкой. Пример. Однако при невозможности применить более рациональную замену переменной этот метод является единственно результативным. Интеграл вида функция R является нечетной относительно cosx. Несмотря на возможность вычисления такого интеграла с помощью универсальной тригонометрической подстановки, рациональнее применить подстановку t = sinx. Функция
Интеграл вида функция R является нечетной относительно sinx. По аналогии с рассмотренным выше случаем делается подстановка t = cosx. Тогда Интеграл вида функция R четная относительно sinx и cosx. Для преобразования функции R в рациональную используется подстановка t = tgx. Тогда Интеграл произведения синусов и косинусов различных аргументов. В зависимости от типа произведения применятся одна из трех формул:
Иногда применяются некоторые нестандартные приемы. Пример. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |