|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Методические указания. Наиболее труден для исследования конвективный теплообменНаиболее труден для исследования конвективный теплообмен. Действительно, для расчета передачи теплоты конвекцией необходимо знать числовые значения коэффициента теплоотдачи α для каждого конкретного случая, но α не является физической константой, так как этот коэффициент характеризует не отдельное тело, а тепловое взаимодействие двух тел: жидкости (или газа) и твердого тела. Поэтому α зависит от большого количества факторов. Система уравнений, определяющая конвективный теплообмен и, следовательно, позволяющая (в принципе) определить α, может быть решена только для ограниченного числа простейших случаев и то с определенными допущениями. Получение числовых значений α из эксперимента на натуре экономически нецелесообразно: необходимо провести громадное количество опытов, чтобы выяснить влияние на α каждого из действующих факторов, причем мы получим ответ лишь для частного случая исследуемого объекта. Дело осложняется еще и тем, что различные величины, от которых зависит α, часто связаны между собой; например, при изменении температуры меняется вязкость, теплоемкость, коэффициент теплопроводности и др. Выход из положения дает теория подобия. Она, во-первых, дает возможность проводить эксперименты не на натуре, а на модели, и результаты опытов на модели распространить на все подобные явления; во-вторых, основываясь на системе дифференциальных уравнений конвективного теплообмена, она четко определяет условия подобия физических явлений и процессов. Обработка экспериментальных данных в критериальной форме позволяет выявить главные факторы, влияющие на величину α, и отбросить второстепенные. Рассматривая, например, вынужденное движение жидкости в трубе и считая температуру жидкости и стенки трубы различными, можно определить тепловой поток между ними. Для этого необходимо знать коэффициент теплоотдачи α. Желательно иметь данные по величине α не только для выбранной трубы, рода жидкости и ее скорости, но и для других условий. Это оказывается возможным с помощью теории подобия. Определяемый критерий Нуссельта Nu, в.который входит α(Nu = α l /λ), при вынужденном движении жидкости зависит в основном от двух параметров: критерия Рейнольдса Re == wl/v, определяющего характер движения жидкости, и критерия Прандтля Pr = v / a, определяющего физические свойства жидкости. Следовательно, Nu = f (Re, Pr). Замеряя величины, входящие в критерии, в серии опытов, получим таблицы, определяющие величину Nu (а следовательно, и α) в зависимости от значений Re и Pr. Результаты эти обычно представляют приближенно в виде степенной функции Nu = c RemPrn По формулам такого типа обычно и рассчитывают коэффициент теплоотдачи α. Студент должен четко уяснить физический смысл основных критериев (Рейнольдса, Прандтля, Грасгофа, Нуссельта) и применять при расчетах те критериальные зависимости, которые соответствуют конкретному виду задачи. Переходя к изучению отдельных видов теплообмена, а также конкретных задач, необходимо внимательно изучить те предположения и допущения, на базе которых строится их решение. Поэтому одной из основных задач студента при изучении этой темы является четкое усвоение ответов на следующие вопросы: 1. Каким образом (с помощью каких исходных аналитических зависимостей) находятся определяющие критерии? 2. Какой критериальной зависимостью следует воспользоваться для конкретного случая расчета коэффициента теплоотдачи α? (Для этого нужно определить характер движения — ламинарный или турбулентный и природу его возникновения — свободное или вынужденное.) 3. Каковы определяющий размер и определяющая температура? (За определяющую температуру при экспериментах выбирается или температура поверхности стенки, или средняя температура жидкости и стенки. На выбор той или иной температуры указывает соответствующий индекс у критериев.) 4. Находятся ли параметры задачи в интервале значений критериев, для которого справедлива выбранная формула? Вопросы для самопроверки. 1. Сформулируйте основной закон теплоотдачи конвекцией. 2. Какой критерий характеризует вынужденную конвекцию? 3. Из каких уравнений выводятся критерии Re, Gr, Pr и Nu? 4. Какой критерий характеризует свободную конвекцию? 5. Что характеризует критерий Нуссельта? 6. Что такое определяющая температура и определяющий размер? 7. Почему при обтекании стенки жидкостью в непосредственной близости от поверхности стенки температурный градиент резко увеличивается? 8. В чем особенности теплоотдачи при кипении воды и конденсации водяного пара? Какие режимы кипения вам известны?
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |