|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Отдельные задачи теплопроводности при стационарномРежиме В технике часто возникают задачи определения температурного поля тела и установления законов передачи теплоты. В результате решения дифференциального уравнения теплопроводности совместно с условиями однозначности можно найти температурное поле, а на основании закона Фурье ¾ соответствующие тепловые потоки. Следует отметить, что аналитическое решение поставленной задачи возможно только для тел правильной геометрической формы и при достаточно простых условиях однозначности. В остальных случаях эта задача решается численными или экспериментальными методами. Рассмотрим несколько тел простой формы — таких, как плоская стенка и полая труба — в случае стационарного распространения теплоты, для которых уравнение теплопроводности значительно упрощается. 4.2.7.1. Теплопроводность через плоскую и цилиндрическую стенки. Рассмотрим однородную плоскую однослойную стенку толщиной d, (рис. 4.4), имеющую неограниченную длину и ширину. На наружных поверхностях стенки поддерживаются постоянные температуры t1 и t2. Коэффициент теплопроводности стенки постоянен и равен l. При стационарном режиме ¶t/¶t=0 и отсутствии внутренних источников теплоты qv=0 и с учетом того, что в этом случае температура будет изменяться только в направлении оси ОХ, дифференциальное уравнение теплопроводности примет вид (4.22) Интегрируя уравнение (4.22), находим (4.23)
Рис. 4.4. Температурное поле плоской однослойной стенки После второго интегрирования получаем общий вид уравнения распределения температур в плоских стенках: t=C1x+C2. (4.24) Постоянные С1 и С2 в уравнении (2.24) определяются из граничных условий: при х=0 t=t1, C 2= t 1; при х=d t=t2, Подставляя значения постоянных С1 и С2 в уравнение (4.24), получаем уравнение распределения температуры в рассматриваемой плоской однослойной стенке (4.25) Уравнение (4.25) является уравнением прямой линии. Плотность теплового потока, проходящего через стенку в соот-ветствии с законом Фурье, q = -l¶t/¶n. Учитывая, что , получим . (4.26) Отношение d/l (Вт/(м2×К)) называется тепловой проводимостью стенки, а обратная величина d/l (м2×К/Вт) — тепловым или термическим сопротивлением стенки. Последнее представляет собой изменение температуры в стенке на единицу плотности теплового потока. Тепловой поток, который передается через полную поверхность стенки, , Вт. (4.27) Для многослойных стенок уравнение имеет вид . (4.28) Величина называется полным термическим сопротивлением теплопроводности многослойной стенки. При сравнении переноса теплоты через многослойную стенку и стенку из однородного материала удобно ввести в рассмотрение эквивалентный коэффициент теплопроводности lэкв многослойной стенки. Он равен коэффициенту теплопроводности однородной стенки, толщина которой D равна толщине многослойной стенки , а термическое сопротивление равно термическому сопротивлению рассматриваемой стенки, т.е.: . Отсюда (4.29) Из уравнения (4.29) следует, что эквивалентный коэффициент теплопроводности lэкв зависит не только от теплофизических свойств слоев, но и от их толщины. Графически распределение температур по сечению многослойной стенки представляется ломаной линией; температуры на границе соприкосновения слоев можно определить уравнением (4.30) При рассмотрении стационарного процесса теплопроводности в цилиндрической однослойной стенке (трубе) с внутренним радиусом r1 и наружным r2 (рис. 4.5) получаем уравнение распределения температуры: или . (4.31)
Рис. 4.5. Температурное поле однослойной цилиндрической стенки Уравнение (4.31) представляет собой уравнение логарифмической кривой. То обстоятельство, что распределение температуры в цилиндрической стенке является криволинейным, можно объяснить следующим. В случае плоской стенки плотность теплового потока остается одинаковой для всех изотермических поверхностей и градиент температуры сохраняет для всех изотермических поверхностей постоянную величину. В случае цилиндрической стенки плотность теплового потока через любую изотермическую поверхность изменяется, т. к. величина поверхности зависит от радиуса (H=2pr l), что приводит к изменению градиента температуры. Для нахождения количества теплоты, проходящего через цилиндрическую поверхность величиной Н в единицу времени, можно воспользоваться законом Фурье . Подставляя значение градиента температуры и поверхности, получаем , Вт. (4.32) Из уравнения (4.32) следует, что количество теплоты, проходящее через цилиндрическую стенку в единицу времени, полностью определяется заданными граничными условиями. Тепловой поток (4.32) может быть отнесен либо к единице длины трубы, либо к единице внутренней или внешней поверхности. Расчетная формула для плотности теплового потока, проходящего через единицу длины трубы, запишется: , Вт/м. (4.33) Тепловой поток, отнесенный к единице трубы, измеряется в Вт/м и называется линейной плотностью теплового потока. Как видно из уравнения (4.33), при неизменном отношении d2/d линейная плотность теплового потока не зависит от поверхности цилиндрической стенки. Тепловой поток через единицу внутренней поверхности запишется: , Вт/м. (4.34) Тепловой поток через единицу наружной поверхности запишется: , Вт/м. (4.35) На основании полученного уравнения теплового потока на единицу длины трубы (4.33) можно получить уравнение теплового потока многослойной цилиндрической стенки. В этом случае необходимо выразить разности температур слоев из указанного уравнения, а затем, аналогично примеру с плоской стенкой, сложить полученные результаты. В результате получаем уравнение теплового потока многослойной цилиндрической стенки: , Вт/м. (4.36) Величина, стоящая в знаменателе, называется полным термическим сопротивлением многослойной цилиндрической стенки. Уравнение (4.36) может быть использовано для определения температур на границах любого слоя: . (4.37) Таким образом, полученные уравнения температурного поля и теплового потока позволяют определить температуры в любой требуемой точке тела (пластины или цилиндра) и определить величину теплового потока. Температурное поле для шаровой стенки имеет вид . (4.38) Тепловой поток определяется по уравнению , Вт. (4.39) Указанные уравнения можно использовать для расчета температур в агрегатах и узлах автомобиля. Например, распределение температур по толщине двигателя или стенки кабины можно считать по уравнениям плоских стенок; карданных валов — по уравнениям цилиндрических стенок; заднего моста, главной передачи — по уравнениям шаровых стенок. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |