АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Дифференциальные уравнения теплопроводности

Читайте также:
  1. Борьба организма с гипотермией в воде возможна только за счет снижения теплопроводности и увеличения теплообразования в результате более интенсивного обмена веществ.
  2. Виды игр (безкоалиционные, кооперативные, дифференциальные и другие).
  3. Вывод уравнения Нернста
  4. Вывод уравнения политропного процесса
  5. Диф ур-е теплопроводности
  6. Дифференциальные признаки
  7. Дифференциальные уравнения высших порядков, допускающие понижение порядка.
  8. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ КОНВЕКТИВНОГО МАССО- И ТЕПЛООБМЕНА.
  9. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ КОНВЕКТИВНОГО ТЕПЛООБМЕНА.
  10. Дифференциальные уравнения равновесия Эйлера
  11. Задача Дирихле для уравнения Лапласа в полосе, полуполосе, полуплоскости и четверти плоскости. Метод Фурье.

Решение задач по определению температурного поля осуществляется на основании дифференциального уравнения теплопроводности, выводы которого показаны в специальной литературе. В данном пособии приводятся варианты дифференциальных уравнений без выводов.

При решении задач теплопроводности в движущихся жидкостях, характеризующих нестационарное трехмерное температурное поле с внутренними источниками теплоты, используется уравнение

(4.10)

Уравнение (4.10) является дифференциальным уравнением энергии в декартовой системе координат (уравнение Фурье ¾ Кирхгофа). В таком виде оно применяется при изучении процесса теплопроводности в любых телах.

Если wx=wy=wz=0, т. е. рассматривается твердое тело, и при отсутствии внутренних источников теплоты qv=0, тогда уравнение энергии (4.10) переходит в уравнение теплопроводности для твердых тел (уравнение Фурье)

(4.11)

Величину l/С×r=a, м2/сек в уравнении (4.10) называют коэффициентом температуропроводности, который является физическим параметром вещества, характеризующим скорость изменения температуры в теле при неустановившихся процессах.

Если коэффициент теплопроводности характеризует способность тел проводить теплоту, то коэффициент температуропроводности является мерой теплоинерционных свойств тела. Из уравнения (4.10) следует, что изменение температуры во времени ¶t/¶t для любой точки пространства пропорционально величине «а», т. е. скорость изменения температуры в любой точке тела будет тем больше, чем больше коэффициент температу-ропроводности. Поэтому при прочих равных условиях выравнивание температур во всех точках пространства будет происходить быстрее в том теле, которое обладает большим коэффициентом температуропроводности. Коэффициент температуропроводности зависит от природы вещества. Например, жидкости и газы обладают большой тепловой инерционностью и, следовательно, малым коэффициентом температуропроводности. Металлы обладают малой тепловой инерционностью, так как они имеют большой коэффициент температуропроводности.

Для обозначения суммы вторых производных по координатам в уравнениях (4.10) и (4.11) можно использовать символ Ñ2, так называемый оператор Лапласа, и тогда в декартовой системе координат

Выражение Ñ2t в цилиндрической системе координат имеет вид

Для твердого тела в стационарных условиях с внутренним источником теплоты уравнение (4.10) преобразуется в уравнение Пуассона

(4.12)

Наконец, для стационарной теплопроводности и при отсутствии внутренних источников теплоты уравнение (4.10) принимает вид уравнения Лапласа

(4.13)

Дифференциальное уравнение теплопроводности в цилиндрических координатах с внутренним источником теплоты

(4.14)


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)