|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
КОНСПЕКТ ЛЕКЦИЙ
Овладение тепловой энергией позволило человечеству совершить первую научно-техническую революцию и перейти в качественно новый этап своего развития — построить индустриальное общество. Без знания законов, управляющих переходом теплоты в другие формы энергии и распространением ее в пространстве, это было бы невозможно. Первоначально термодинамика решала достаточно ограниченный круг задач, связанных с чисто практическими расчетами тепловых (в основном паровых) машин. Однако методы анализа процессов, основанные на двух фундаментальных законах природы — законе сохранения энергии и законе роста энтропии — оказались настолько эффективны, что термодинамика проникла во все сферы науки и техники. Это произошло усилиями многих выдающихся ученых: Н.-Л. С. Карно, В. Томсона (лорда Кельвина), М. Планка, Р. Майера, М. В. Ломоносова, Н. И. Белоконя и других. Термодинамика изучает взаимные переходы различных видов энергии друг в друга, т. е. рисует энергетическую картину мира и тех сил, которые движут им. В термодинамике обычно применяют один из двух методологических подходов: статистический и феноменологический. При статистическом подходе рабочее тело (газ) рассматривается как совокупность большого числа микро частиц, характеристики которых, например энергия или скорость, могут быть описаны с помощью законов математической статистики. Эти характеристики для различного числа частиц будут различны, поэтому можно говорить о неких средних свойствах, описываемых с помощью нормального или иного распределения. При феноменологическом подходе микроструктура вещества вообще не учитывается. Поведение рабочего тела оценивают только по внешнему балансу, т.е. при подведении энергии извне наблюдают за внешними эффектами. В таком случае рабочее тело можно представить как «чёрный ящик», на вход которого поступает некий сигнал, а на выходе наблюдают ответную реакцию. Именно такой подход принят в технической термодинамике, что обусловило специфические особенности её применения в инженерной практике. Для оценки работы тепловых двигателей или холодильных машин можно не знать, состоит ли рабочее тело из молекул и атомов, или микроструктура вещества неизвестна. Второй раздел курса — теплопередача — описывает процессы обмена теплотой в трех основных ее формах: теплопроводность, конвекция, излучение. Как правило, три эти формы в технических процессах действуют совместно. Задача грамотного специалиста — выделить в каждом данном процессе преобладающую форму и провести теплотехнические расчёты по законам, описывающим именно эту форму теплообмена. При совместном действии двух или трёх форм теплообмена необходимо понимать взаимное внимание их друг на друга и учитывать это при анализе тепловых процессов. Хорошее знание законов теплопередачи позволяет увеличить эффективность использования энергоресурсов, повысить культуру производства и снизить энергоёмкость производства. Не только для каждого инженера, но и для любого грамотного человека знакомство с этими фундаментальными законами Природы является абсолютно необходимым. Авторы выражают искреннюю благодарность Бахмат Марине Геннадьевне и Виктору Геннадьевичу за техническую помощь в подготовке работы к изданию. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |