АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теория размерностей

Читайте также:
  1. I. Классическая теория.
  2. II. Квантовая теория А. Эйнштейна.
  3. III. Теория П. Дебая.
  4. XII. ТЕОРИЯ РАЗВИТИЯ
  5. Анализ спроса и предложения( теория спроса и предложения)
  6. Ассоциативно-рефлекторная теория обучения
  7. Атомно-молекулярная теория.
  8. Безопасность и теория риска
  9. Волновая теория
  10. Вопрос 3. Эволюционная теория Ч.Дарвина
  11. Вопрос 4. Трудовая теория Ф.Энгельса
  12. Воспроизводство вирусов, теория мемов и психогенетика.

Теория размерностей используется в том случае, когда нет дифференциального уравнения, описывающего данный процесс. В условиях вынужденной конвекции величина коэффициента теплоотдачи является функцией по крайней мере шести независимых переменных: весовой скорости u, кг/(м2×с); линейного размера l; вязкости m, кг/(м×с); теплоемкости С, Дж/(кг×К); плотности r, кг/м3 и теплопроводности l, Вт/(м×К).

При экспериментальном определении a Вт/(м2×К) необходимо исследовать зависисмость a от шести переменных и провести число опытов , где А — число опытов с одной переменной, например, А = 10; n — число независимых переменных. Для данного примера оказывается, что число опытов равно одному миллиону, что является совершенно нереальным. Применение же теории размерностей приводит к сокращению независимых переменных. В условиях вынужденной конвекции коэффициент теплоотдачи является функцией

a = a(u, l, m, С, r, l). (4.42)

Полный дифференциал a равен:

. (4.43)

Для перехода к безразмерным (относительным) величинам необходимо иметь переменные, не отсчитываемые от постоянного «нулевого» уровня. Разделим полученное уравнение на a и одновременно делим и умножаем каждое слагаемое на соответствующие значения (l / l; u/u; m/m и т. д.), тогда

. (4.44)

Считаем, что соотношения частных производных являются постоянными:

; ; …; ,

тогда получим

. (4.45)

Интегрируем полученное выражение:

ln a=iu ln u+i l ln l +…+il ln l+ln C0. (4.46)

Потенцируем и получим

. (4.47)

Необходимым условием общности полученного решения должно быть требование безразмерности постоянной С0 или ее обратной величины:

. (4.48)

Это уравнение не зависит от системы единиц, а в связи с тем, что С0 является безразмерной, то все единицы измерений (справа) должны входить в это уравнение в «0» степени. Для исключения размерностей составим табл. 2.1.

Таблица 4.1


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)