|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Теплообмене
Исключаем размерности: 1 — (кг) iu + im + ir - ic = 0 2 — (м) i l - 2iu - im - 3ir - il+ 2 = 0 3 — (c) - i l -im - il+ 1 = 0 4 — (°К) - il - ic + 1 = 0 5 — (Дж) il + ic - 1 = 0. Как видно из последних двух уравнений, полученных исключением размерности, они тождественны, т. к. определяются из теплоемкости воды. Таким образом, имеем 4 независимых уравнения связи при шести независимых переменных. Следовательно, в исходной системе уравнений только два неизвестных показателя подлежат экспериментальному определению, а остальные определяются по полученной системе уравнений в зависимости от этих двух основных. Например, в опыте определены показатели и они соответственно равны: iu= n; ic = m (n, m — число); тогда, используя систему уравнений, получим: из 4 — il= 1 - ic= 1 - m из 3 — im = - iu - il + 1 = -n + 1 + m - 1 = m - n из 1 — ir = ic - iu - im = m - n - m + n = 0 из 2 — i l = 2iu + im + il + 3ir - 2 = 2n + m - n +1 - m - 2 = n - 1. Подставив полученные значения показателей в (4.48), получим (4.49) Преобразуем полученные уравнения, сгруппировав величины с одинаковыми показателями (4.50) или , (4.51) где u l /μ = ω l /ν = Re — критерий Рейнольдса — критерий гидродина-мического подобия; μС/λ = ν/a = Pr — критерий Прандтля — критерий теплофизического подобия; α l /λ = Nu — критерий Нуссельта — критерий теплового подобия. Таким образом, на основании теории размерностей получено уравнение связи безразмерных параметров, характеризующих теплообмен в условиях вынужденной конвекции и число независимых переменных снижено с 6 до 2, что обеспечивает возможность их экспериментального определения, и тогда N=An=100. Правильность использования теории размерностей подтверждается π-теоремой, исходя из чего физическое уравнение, содержащее n³2 размерных величин, из которых m³1 имеют независимые размерности, после приведения их к безразмерному виду должно содержать n безразмерных параметров n = n – m. В нашем случае n = n – m = 6 – 4 = 2. Численные значения постоянных, входящих в уравнение (4.51) С0, n, m, определяются экспериментально и в зависимости от вида теплообмена приводятся в справочной литературе, некоторые даны в табл. 4.3. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |