АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Коэффициент теплопроводности

Читайте также:
  1. D. пропорционально корню квадратному из коэффициента латеральной диффузии.
  2. G – коэффициентОукена.
  3. Борьба организма с гипотермией в воде возможна только за счет снижения теплопроводности и увеличения теплообразования в результате более интенсивного обмена веществ.
  4. Вопрос 3. Анализ финансовых коэффициентов
  5. Вопрос: Основные средства и не материальные активы в таможенном деле. коэффициенты обновления и выбытия основных средств.
  6. Выбор коэффициента относительной ширины зубчатого венца
  7. Дисперсия, среднее квадратическое отклонение, коэффициент вариации.
  8. Диф ур-е теплопроводности
  9. Дифференциальные уравнения теплопроводности
  10. Для оценки естественного освещения принята относительная величина – коэффициент естественной освещенности (КЕО).
  11. Зависимость коэффициента поглощения NO водой от температуры
  12. Зависимость тормозного и остановочного пути АТС от коэффициента сцепления колёс с дорогой

Коэффициент теплопроводности является физическим параметром вещества, характеризующим его способность проводить теплоту. Из уравнения (4.7) следует, что коэффициент теплопроводности численно равен:

, Вт/(м×К); (4.8)

его значение зависит от большого числа факторов l=¦(P, t, r, влажности, рода вещества и т. д.) и определяется в основном экспериментально.

Для чистых металлов величина l изменяется в пределах от 20 до 410 Вт/(м×К). Самым теплопроводным металлом является серебро ¾ l = 410 Вт/(м×К), затем идут чистая медь — l = 395 Вт/(м×К), золото ¾ l = 300 Вт/(м×К), алюминий — l = 210 Вт/(м×К) и т. д.

В металлах носителем тепловой энергии являются свободные электроны. При повышении температуры тела вследствие усиления тепловых неоднородностей рассеивание электронов увеличивается, что влечет за собой уменьшение коэффициента теплопроводности чистых металлов. При наличии разного рода примесей коэффициент теплопроводности металлов резко убывает. Последнее можно объяснить увеличением структурных неоднородностей, которые приводят к рассеиванию электронов. Так, для чистой меди l = 395 Вт/(м×К), для той же меди со следами мышьяка l = 142 Вт/(м×К).

В диэлектриках с повышением температуры коэффициент теплопроводности обычно увеличивается. Как правило, для материалов с большей объемной плотностью коэффициент теплопроводности имеет более высокое значение. Он зависит от структуры материала, его пористости и влажности.

Многие строительные и теплоизоляционные материалы имеют пористое строение (кирпич, бетон, керамзит, асбест, шлак и др.), и применение закона Фурье к таким телам является в известной мере условным. Наличие пор в материале не позволяет рассматривать такие тела как сплошную среду. Коэффициент теплопроводности порошкообразных и пористых тел сильно зависит от их объемной пористости. Например, при возрастании плотности r от 400 до 800 кг/м3 коэффициент теплопроводности асбеста увеличивается от 0,105 до 0,248 Вт/(м×К). Такое влияние плотности на коэффициент теплопроводности объясняется тем, что теплопроводность заполняющего поры воздуха значительно меньше, чем твердых компонентов пористого материала.

Коэффициент теплопроводности пористых материалов сильно зависит также от влажности. Для влажного материала коэффициент теплопроводности значительно больше, чем для сухого материала и воды в отдельности. Например, для сухого кирпича l = 0,35, для воды l = 0,60, а для влажного кирпича l = 1,0 Вт/(м×К). Этот эффект может быть объяснен конвективным переносом теплоты вследствие капиллярного движения воды внутри пористого материала и частично тем, что абсорбционно связанная влага имеет иные характеристики по сравнению со свободной водой. Увеличение коэффициента теплопроводности зернистых материалов с ростом температуры можно объяснить тем, что с повышением температуры возрастает теплопроводность среды, заполняющей промежутки между зернами, а также увеличивается теплопередача излучением зернистого массива.

Коэффициенты теплопроводности строительных и теплоизоляционных материалов имеют значения, лежащие примерно в пределах от 0,023 до 3,0 Вт/(м×К). Материалы с низким значением коэффициента теплопроводности (меньше 0,25 Вт/(м×К)), обычно применяемые для тепловой изоляции, называются теплоизоляционными.

Коэффициент теплопроводности l газов лежит в пределах от 0,006 до 0,6 Вт/(м×К). Теплопроводность газов возрастает с повышением температуры. Это объясняется тем, что скорость перемещения молекул газа с повышением температуры возрастает. Среди газов резко отличаются своим высоким коэффициентом теплопроводности гелий и водород. Коэффициент теплопроводности у них в 5-10 раз больше, чем у других газов. Молекулы гелия и водорода обладают малой массой, а следовательно, имеют большую среднюю скорость перемещения, чем и объясняется их высокий коэффициент теплопроводности.

Коэффициент теплопроводности капельных жидкостей лежит примерно в пределах от 0,07 до 0,7 Вт/(м×К). Опыты подтверждают, что для большинства жидкостей с повышением температуры коэффициент теплопроводности l убывает, исключение составляют вода и глицерин. При повышении давления коэффициенты теплопроводности жидкостей возрастают. В связи с тем, что тела могут иметь различную температуру, а при наличии теплообмена и в самом теле температура будет распределена неравномерно, то в первую очередь важно знать зависимость коэффициента теплопроводности от температуры. Опыты показывают, что для многих материалов с достаточной для практики точностью зависимость коэффициента теплопроводности от температуры можно принять линейной:

l = l0[1 ± b (t - t0)], (4.9)

где l0 ¾ значение коэффициента теплопроводности при температуре t0;

b ¾ постоянная, определяемая опытным путем.

В практических расчетах значение l обычно определяется по среднеарифметической температуре на границах тела, и это значение принимается постоянным. Как показал профессор Г. М. Кондратьев, при стационарной теплопроводности такая замена законна и единственнно правильна.

Значения коэффициентов теплопроводности материалов, применяемых в автомобилях (чугун, сталь, алюминий, вода, антифриз и др.), приводятся в справочной литературе.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)