АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Виды игр (безкоалиционные, кооперативные, дифференциальные и другие)

Читайте также:
  1. Дифференциальные признаки
  2. Дифференциальные уравнения высших порядков, допускающие понижение порядка.
  3. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ КОНВЕКТИВНОГО МАССО- И ТЕПЛООБМЕНА.
  4. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ КОНВЕКТИВНОГО ТЕПЛООБМЕНА.
  5. Дифференциальные уравнения равновесия Эйлера
  6. Дифференциальные уравнения теплопроводности
  7. Однородные дифференциальные уравнения.
  8. Оператор Гамильтона (набла), дифференциальные операции второго порядка, связь между ними.
  9. Система согласных фонем. Конститутивные, дифференциальные и интегральные признаки согласных фонем. Состав сильных согласных фонем. Согласные фонемы в слабых позициях.

кооперативные Теория игр занимается изучением конфликтов, то есть ситуаций, в которых группе людей необходимо выработать какое-либо решение, касающееся их всех. Некооперативная теория игр изучает то, как должны действовать игроки, чтобы прийти к тому или иному результату, кооперативная же теория игр изучает вопрос о том, какие исходы достижимы и условия достижения этих исходов.

Согласно определению, кооперативной игрой называется пара (N,v), где N — это множество игроков, а v — это функция: 2 NR, из множества всех коалиций в множество вещественных чисел (так называемая характеристическая функция). Предполагается, что пустая коалиция зарабатывает ноль, то есть v(∅) = 0. Характеристическая функция описывает величину выгоды, которую данное подмножество игроков может достичь путем объединения в коалицию. Подразумевается, что игроки примут решение о создании коалиции в зависимости от размеров выплат внутри коалиции.

· Монотонность — свойство, при котором у больших (в смысле включения) коалиций выплаты больше: если .

· Супераддитивность — свойство, при котором для любых двух непересекающихся коалиций A и B сумма их выгод по отдельности не больше их выгоды при объединении:

· Выпуклость — характеристическая функция является выпуклой:

Простые игры — особый вид кооперативных игр, где все выплаты это 1 или 0, то есть коалиции либо «выигрывают», либо «проигрывают». Простая игра называется правильной, если:

.

Значение этого: коалиция выигрывает тогда и только тогда, когда дополняющая коалиция (оппозиция) проигрывает.

В соответствии с определением кооперативной игры, множество игроков N в совокупности обладает некоторым количеством определенного блага, которое надлежит разделить между участниками. Принципы этого деления и называются решениями кооперативной игры.

Решение может быть определено как для конкретной игры, так и для класса игр. Естественно, что наибольшей важностью обладают как раз те принципы, которые применимы в широком спектре случаев (то есть для обширного класса игр).

Решение может быть как однозначным (в этом случае для каждой игры решением является единственное распределение выигрышей), так и многозначным (когда для каждой игры могут быть определены несколько распределений). Примерами однозначных решений служат N-ядро и вектор Шепли, примерами многозначных — C-ядро иK-ядро.

 

 

Дифференциальные игры — раздел математической теории управления, в котором изучается управление объектом в конфликтных ситуациях (см. теория игр). В дифференциальных играх возможности игроков описываются дифференциальными уравнениями или дифференциальными включениями, содержащими управляющие векторы, которыми распоряжаются игроки. Для выбора своего управления каждый игрок может использовать лишь текущую информацию о поведении игроков. Различают дифференциальные игры двух игроков и многих игроков.

Наиболее исследованными являются дифференциальные игры преследования, в которых количество игроков равно 2, одного называют догоняющим, другого убегающим. Цель догоняющего — приведение вектора на заданное множество за возможно короткое время; цель убегающего — по возможности оттянуть момент прихода вектора на . Основополагающие результаты в дифференциальных играх получены в 60-е гг. 20 в. в СССР Л. С. Понтрягиным, Н. Н. Красовским,Е. Ф. Мищенко, Б. Н. Пшеничным и др., в США — Р. Айзексом, Л. Берковицем, У. Флемингом и др.

Первым, кто исследовал дифференциальные игры, стал Руфус Айзекс (работа 1951 года, впервые опубликована в 1965 году). А одна из первых проанализированных им игр стала игра «Шофёр-убийца» (homicidal chauffeur game). Надо отметить, что сам Айзекс вместо «шофёра» и «пешехода» подразумевал торпеду и увёртывающийся от неё небольшой катер.[1]

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)